Suppr超能文献

几何逼真且防水的神经元超微结构流形的综合,用于计算机建模。

Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for in silico modeling.

机构信息

Blue Brain Project, École Polytecnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, Genève 1202, Switzerland.

出版信息

Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae393.

Abstract

Understanding the intracellular dynamics of brain cells entails performing three-dimensional molecular simulations incorporating ultrastructural models that can capture cellular membrane geometries at nanometer scales. While there is an abundance of neuronal morphologies available online, e.g. from NeuroMorpho.Org, converting those fairly abstract point-and-diameter representations into geometrically realistic and simulation-ready, i.e. watertight, manifolds is challenging. Many neuronal mesh reconstruction methods have been proposed; however, their resulting meshes are either biologically unplausible or non-watertight. We present an effective and unconditionally robust method capable of generating geometrically realistic and watertight surface manifolds of spiny cortical neurons from their morphological descriptions. The robustness of our method is assessed based on a mixed dataset of cortical neurons with a wide variety of morphological classes. The implementation is seamlessly extended and applied to synthetic astrocytic morphologies that are also plausibly biological in detail. Resulting meshes are ultimately used to create volumetric meshes with tetrahedral domains to perform scalable in silico reaction-diffusion simulations for revealing cellular structure-function relationships. Availability and implementation: Our method is implemented in NeuroMorphoVis, a neuroscience-specific open source Blender add-on, making it freely accessible for neuroscience researchers.

摘要

理解脑细胞的细胞内动力学需要进行三维分子模拟,纳入超微结构模型,以在纳米尺度上捕捉细胞膜的几何形状。虽然有大量的神经元形态可在线获得,例如来自 NeuroMorpho.Org,但将这些相当抽象的点和直径表示转换为几何上逼真且可用于模拟的、即无泄漏的流形是具有挑战性的。已经提出了许多神经元网格重建方法;然而,它们生成的网格要么在生物学上不可信,要么不防水。我们提出了一种有效且无条件稳健的方法,能够从形态描述中生成具有刺状皮质神经元的几何逼真和防水表面流形。我们的方法的稳健性基于具有各种形态类别的皮质神经元的混合数据集进行评估。该实现无缝扩展并应用于合成星形胶质细胞形态,这些形态在细节上也是合理的生物学形态。最终生成的网格用于创建具有四面体域的体积网格,以进行可扩展的计算反应扩散模拟,从而揭示细胞结构-功能关系。可用性和实现:我们的方法在 NeuroMorphoVis 中实现,这是一个特定于神经科学的开源 Blender 附加组件,使神经科学研究人员可以免费使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b6/11317524/e410ba5489d9/bbae393f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验