Suppr超能文献

人工智能斑块定量分析的效用:DECODE研究结果

Utility of Artificial Intelligence Plaque Quantification: Results of the DECODE Study.

作者信息

Rinehart Sarah, Raible Steven J, Ng Nicholas, Mullen Sarah, Huey Whitney, Rogers Campbell, Pursnani Amit

机构信息

Charleston Area Medical Center (CAMC), Charleston, West Virginia.

Norton Healthcare, Louisville, Kentucky.

出版信息

J Soc Cardiovasc Angiogr Interv. 2024 Mar 26;3(3Part B):101296. doi: 10.1016/j.jscai.2024.101296. eCollection 2024 Mar.

Abstract

BACKGROUND

Artificial Intelligence Plaque Analysis (AI-QCPA, HeartFlow) provides, from a CCTA, quantitative plaque burden information including total plaque and plaque subtype volumes. We sought to evaluate the clinical utility of AI-QCPA in clinical decision making.

METHODS

One hundred cases were reviewed by 3 highly experienced practicing cardiologists who are SCCT level 3 CCTA readers. Patients had varying levels of calcium (median CACS: 99.5) and CAD-RADS scores. Initial management plan for each case was a majority decision based upon patient demographics, clinical history, and CCTA report. AI-QCPA was then provided for each patient, and the plan was reconsidered. The primary endpoint was the reclassification rate (RR). In a secondary analysis of 40 cases, the above process was repeated but the initial plan was based upon review of the actual CCTA images.

RESULTS

RR following AI-QCPA review was 66% (66/100) of cases (95% CI, 56.72%-75.28%). RR ranged from 47% in cases with CACS 0 to 96% in cases with CACS >400, and from 40% in CAD-RADS 1 cases to 94% in CAD-RADS 4 cases. RR was higher in cases with coronary stenoses ≥50% (89.5%) vs cases with stenoses <50% (51.6%). RR was 39% in cases with LDL <70 mg/dL vs 70% in LDL ≥70 mg/dL. Following review of the CCTA images rather than the CCTA report, the RR was 50% (95% CI of 34.51% - 65.49%). The primary reclassification effect was to intensify preventative medical therapy.

CONCLUSIONS

Adding AI-QCPA to CCTA alone leads to a change in clinical care in two-thirds of patients.

摘要

背景

人工智能斑块分析(AI-QCPA,HeartFlow)可从冠状动脉CT血管造影(CCTA)中提供包括总斑块和斑块亚型体积在内的定量斑块负荷信息。我们旨在评估AI-QCPA在临床决策中的临床实用性。

方法

由3位经验丰富的SCCT 3级CCTA阅片的执业心脏病专家对100例病例进行评估。患者的钙化程度各异(中位冠状动脉钙化积分:99.5)且CAD-RADS评分不同。每个病例的初始管理计划是基于患者人口统计学、临床病史和CCTA报告做出的多数决定。然后为每位患者提供AI-QCPA,并重新考虑管理计划。主要终点是重新分类率(RR)。在对40例病例的二次分析中,重复上述过程,但初始计划基于对实际CCTA图像的评估。

结果

经AI-QCPA评估后的RR为66%(66/100)的病例(95%可信区间,56.72%-75.28%)。RR范围从冠状动脉钙化积分0的病例中的47%到冠状动脉钙化积分>400的病例中的96%,以及从CAD-RADS 1级病例中的40%到CAD-RADS 4级病例中的94%。冠状动脉狭窄≥50%的病例中的RR(89.5%)高于狭窄<50%的病例(51.6%)。低密度脂蛋白<70 mg/dL的病例中的RR为39%,而低密度脂蛋白≥70 mg/dL的病例中的RR为70%。在评估CCTA图像而非CCTA报告后,RR为50%(95%可信区间为34.51% - 65.49%)。主要的重新分类效果是加强预防性药物治疗。

结论

仅将AI-QCPA添加到CCTA中会导致三分之二患者的临床治疗发生改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caed/11308844/f54b4dcb06fc/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验