Suppr超能文献

基于多变量神经元放电观测的半平稳谱的多窗谱分析

Multitaper Analysis of Semi-Stationary Spectra from Multivariate Neuronal Spiking Observations.

作者信息

Rupasinghe Anuththara, Babadi Behtash

机构信息

Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742.

出版信息

IEEE Trans Signal Process. 2020;68:4382-4396. doi: 10.1109/tsp.2020.3010197. Epub 2020 Jul 17.

Abstract

Extracting the spectral representations of neural processes that underlie spiking activity is key to understanding how brain rhythms mediate cognitive functions. While spectral estimation of continuous time-series is well studied, inferring the spectral representation of latent non-stationary processes based on spiking observations is challenging due to the underlying nonlinearities that limit the spectrotemporal resolution of existing methods. In this paper, we address this issue by developing a multitaper spectral estimation methodology that can be directly applied to multivariate spiking observations in order to extract the semi-stationary spectral density of the latent non-stationary processes that govern spiking activity. We establish theoretical bounds on the bias-variance trade-off of our proposed estimator. Finally, application of our proposed technique to simulated and real data reveals significant performance gains over existing methods.

摘要

提取构成尖峰活动基础的神经过程的频谱表示,是理解大脑节律如何介导认知功能的关键。虽然对连续时间序列的频谱估计已有充分研究,但基于尖峰观测推断潜在非平稳过程的频谱表示具有挑战性,因为潜在的非线性限制了现有方法的频谱时间分辨率。在本文中,我们通过开发一种多窗谱估计方法来解决这个问题,该方法可直接应用于多变量尖峰观测,以提取控制尖峰活动的潜在非平稳过程的半平稳谱密度。我们为所提出的估计器的偏差-方差权衡建立了理论界限。最后,将我们提出的技术应用于模拟数据和真实数据,结果表明与现有方法相比有显著的性能提升。

相似文献

2
Robust Estimation of Sparse Narrowband Spectra from Neuronal Spiking Data.从神经元放电数据中稳健估计稀疏窄带频谱
IEEE Trans Biomed Eng. 2017 Oct;64(10):2462-2474. doi: 10.1109/TBME.2016.2642783. Epub 2016 Dec 22.
3
Robust spectrotemporal decomposition by iteratively reweighted least squares.通过迭代加权最小二乘法进行稳健的频谱-时间分解
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5336-45. doi: 10.1073/pnas.1320637111. Epub 2014 Dec 2.
4
Spectral Estimation Using Multitaper Whittle Methods with a Lasso Penalty.使用带套索惩罚的多窗Whittle方法进行谱估计。
IEEE Trans Signal Process. 2019 Oct 1;67(19):4992-5003. doi: 10.1109/tsp.2019.2932879. Epub 2019 Aug 2.
6
Multitaper estimates of phase-amplitude coupling.多谱线估计的相位-幅度耦合。
J Neural Eng. 2021 Sep 17;18(5). doi: 10.1088/1741-2552/ac1deb.
8
State-space multitaper time-frequency analysis.状态空间多谱勒时频分析。
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):E5-E14. doi: 10.1073/pnas.1702877115. Epub 2017 Dec 18.
9
A Smoother State Space Multitaper Spectrogram.一种更平滑的状态空间多窗谱图。
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:33-36. doi: 10.1109/EMBC.2018.8512190.
10
The demodulated band transform.解调带变换
J Neurosci Methods. 2016 Mar 1;261:135-54. doi: 10.1016/j.jneumeth.2015.12.004. Epub 2015 Dec 19.

本文引用的文献

1
State-space multitaper time-frequency analysis.状态空间多谱勒时频分析。
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):E5-E14. doi: 10.1073/pnas.1702877115. Epub 2017 Dec 18.
3
Robust Estimation of Sparse Narrowband Spectra from Neuronal Spiking Data.从神经元放电数据中稳健估计稀疏窄带频谱
IEEE Trans Biomed Eng. 2017 Oct;64(10):2462-2474. doi: 10.1109/TBME.2016.2642783. Epub 2016 Dec 22.
4
Network Homeostasis and State Dynamics of Neocortical Sleep.新皮质睡眠的网络稳态与状态动态
Neuron. 2016 May 18;90(4):839-52. doi: 10.1016/j.neuron.2016.03.036. Epub 2016 Apr 28.
5
A review of multitaper spectral analysis.多窗谱分析综述。
IEEE Trans Biomed Eng. 2014 May;61(5):1555-64. doi: 10.1109/TBME.2014.2311996.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验