Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel 4070, Switzerland.
Harvard Medical School, Department of Biomedical Informatics, Boston, Massachusetts 02115, United States.
Mol Pharm. 2024 Sep 2;21(9):4356-4371. doi: 10.1021/acs.molpharmaceut.4c00311. Epub 2024 Aug 12.
We present a novel computational approach for predicting human pharmacokinetics (PK) that addresses the challenges of early stage drug design. Our study introduces and describes a large-scale data set of 11 clinical PK end points, encompassing over 2700 unique chemical structures to train machine learning models. To that end multiple advanced training strategies are compared, including the integration of in vitro data and a novel self-supervised pretraining task. In addition to the predictions, our final model provides meaningful epistemic uncertainties for every data point. This allows us to successfully identify regions of exceptional predictive performance, with an absolute average fold error (AAFE/geometric mean fold error) of less than 2.5 across multiple end points. Together, these advancements represent a significant leap toward actionable PK predictions, which can be utilized early on in the drug design process to expedite development and reduce reliance on nonclinical studies.
我们提出了一种新的计算方法,用于预测人体药代动力学(PK),以解决药物设计早期阶段的挑战。我们的研究介绍并描述了一个包含 11 个临床 PK 终点的大规模数据集,涵盖了超过 2700 个独特的化学结构,用于训练机器学习模型。为此,我们比较了多种先进的训练策略,包括体外数据的整合和一种新的自监督预训练任务。除了预测之外,我们的最终模型还为每个数据点提供了有意义的认知不确定性。这使我们能够成功地识别出具有出色预测性能的区域,在多个终点上的绝对平均折叠误差(AAFE/几何平均折叠误差)小于 2.5。总之,这些进展代表了朝着可操作的 PK 预测迈出的重要一步,这可以在药物设计过程的早期阶段利用,以加快开发速度并减少对非临床研究的依赖。