Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States.
Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California 94080, United States.
J Am Chem Soc. 2024 Aug 21;146(33):22982-22992. doi: 10.1021/jacs.4c02548. Epub 2024 Aug 12.
Incorporation of C(sp)-F bonds in biologically active compounds is a common strategy employed in medicinal and agricultural chemistry to tune pharmacokinetic and pharmacodynamic properties. Due to the limited number of robust strategies for C(sp)-H fluorination of complex molecules, time-consuming syntheses of such fluorinated analogs are typically required, representing a major bottleneck in the drug discovery process. In this work, we present a general and operationally simple strategy for site-specific β-C(sp)-H fluorination of amine derivatives including carbamates, amides, and sulfonamides, which is compatible with a wide range of functional groups including -heteroarenes. In this approach, an improved electrochemical Shono oxidation is used to set the site of functionalization via net α,β-desaturation to access enamine derivatives. We further developed a series of new transformations of these enamine intermediates to synthesize a variety of β-fluoro-α-functionalized structures, allowing efficient access to pertinent targets to accelerate drug discovery campaigns.
在生物活性化合物中引入 C(sp)-F 键是药物和农业化学中常用的策略,可用于调整药物的药代动力学和药效学性质。由于复杂分子的 C(sp)-H 氟化反应的稳健策略数量有限,因此通常需要耗时的合成此类氟化类似物,这是药物发现过程中的主要瓶颈。在这项工作中,我们提出了一种通用且操作简单的策略,可用于包括氨基甲酸酯、酰胺和磺胺在内的胺衍生物的位点特异性β-C(sp)-H 氟化,该策略适用于包括杂芳环在内的广泛官能团。在该方法中,改进的电化学 Shono 氧化用于通过净α,β-去饱和作用来设定官能化的位置,以获得烯胺衍生物。我们进一步开发了一系列这些烯胺中间体的新转化方法,以合成各种β-氟-α-官能化结构,从而有效地获得相关靶标,以加速药物发现计划。