Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
Plant Cell Rep. 2024 Aug 12;43(9):214. doi: 10.1007/s00299-024-03299-4.
We revealed the intrinsic transformation molecular mechanism of gastrodin by two β-d-glucosidases (GeBGL1 and GeBGL9) during the processing of Gastrodia elata. Gastrodia elata is a plant resource with medicinal and edible functions, and its active ingredient is gastrodin. However, the intrinsic transformation molecular mechanism of gastrodin in G. elata has not been verified. We speculated that β-d-glucosidase (BGL) may be the key enzymes hydrolyzing gastrodin. Here, we identified 11 GeBGL genes in the G. elata genome. These genes were unevenly distributed on seven chromosomes. These GeBGL proteins possessed motifs necessary for catalysis, namely, TF(I/M/L)N(T)E(Q)P and I(V/L)T(H/S)ENG(S). These GeBGLs were divided into five subgroups together with homologous genes from Arabidopsis thaliana, rice, and maize. Quantitative real-time PCR analysis showed GeBGL genes expression was tissue-specific. Gene cloning results showed two mutation sites in the GeBGL1 gene compared with the reference genome. And, the GeBGL4 gene has two indel fragments, which resulted in premature termination of translation and seemed to turn into a pseudogene. Furthermore, protein expression and enzyme activity results proved that GeBGL1 and GeBGL9 have the activity of hydrolyzing gastrodin into 4-hydroxybenzyl alcohol. This study revealed the function of β-d-glucosidase in degrading active compounds during the G. elata processing for medicinal purposes. These results offer a theoretical foundation for elevating the standard and enhancing the quality of G. elata production.
我们揭示了天麻中二种β-葡萄糖苷酶(GeBGL1 和 GeBGL9)在加工过程中使天麻素发生内源性转化的分子机制。天麻是一种具有药用和食用功能的植物资源,其活性成分为天麻素。然而,天麻中天麻素的内源性转化分子机制尚未得到验证。我们推测β-葡萄糖苷酶(BGL)可能是水解天麻素的关键酶。在此,我们在天麻基因组中鉴定了 11 个 GeBGL 基因。这些基因不均匀地分布在 7 条染色体上。这些 GeBGL 蛋白具有催化所必需的基序,即 TF(I/M/L)N(T)E(Q)P 和 I(V/L)T(H/S)ENG(S)。这些 GeBGL 与拟南芥、水稻和玉米的同源基因一起被分为五个亚组。定量实时 PCR 分析显示 GeBGL 基因的表达具有组织特异性。基因克隆结果表明,与参考基因组相比,GeBGL1 基因有两个突变位点。并且,GeBGL4 基因有两个缺失片段,导致翻译提前终止,似乎变成了假基因。此外,蛋白表达和酶活性结果证实 GeBGL1 和 GeBGL9 具有水解天麻素生成 4-羟基苯甲醇的活性。本研究揭示了β-葡萄糖苷酶在天麻药用加工过程中降解活性化合物的功能。这些结果为提高天麻生产的标准和质量提供了理论基础。