Suppr超能文献

基于 DC-YOLOv5 的颈椎成熟度目标检测算法。

DC-YOLOv5-based target detection algorithm for cervical vertebral maturation.

机构信息

Department of Stomatological Hospital, Chongqing Medical University, No.426 Songshibei Road, Yubei District, Chongqing, 401147, China.

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.

出版信息

Phys Eng Sci Med. 2024 Sep;47(3):1277-1290. doi: 10.1007/s13246-024-01432-x. Epub 2024 Aug 12.

Abstract

The cervical vertebral maturation (CVM) method is essential to determine the timing of orthodontic and orthopedic treatment. In this paper, a target detection model called DC-YOLOv5 is proposed to achieve fully automated detection and staging of CVM. A total of 1800 cephalometric radiographs were labeled and categorized based on the CVM stages. We introduced a model named DC-YOLOv5, optimized for the specific characteristics of CVM based on YOLOv5. This optimization includes replacing the original bounding box regression loss calculation method with Wise-IOU to address the issue of mutual interference between vertical and horizontal losses in Complete-IOU (CIOU), which made model convergence challenging. We incorporated the Res-dcn-head module structure to enhance the focus on small target features, improving the model's sensitivity to subtle sample differences. Additionally, we introduced the Convolutional Block Attention Module (CBAM) dual-channel attention mechanism to enhance focus and understanding of critical features, thereby enhancing the accuracy and efficiency of target detection. Loss functions, precision, recall, mean average precision (mAP), and F1 scores were used as the main algorithm evaluation metrics to assess the performance of these models. Furthermore, we attempted to analyze regions important for model predictions using gradient Class Activation Mapping (CAM) techniques. The final F1 scores of the DC-YOLOv5 model for CVM identification were 0.993, 0.994 for mAp0.5 and 0.943 for mAp0.5:0.95, with faster convergence, more accurate and more robust detection than the other four models. The DC-YOLOv5 algorithm shows high accuracy and robustness in CVM identification, which provides strong support for fast and accurate CVM identification and has a positive effect on the development of medical field and clinical diagnosis.

摘要

颈椎成熟度(CVM)方法对于确定正畸和矫形治疗的时机至关重要。在本文中,提出了一种名为 DC-YOLOv5 的目标检测模型,用于实现 CVM 的全自动检测和分期。总共对 1800 张头影测量射线照片进行了标记和分类,这些射线照片是根据 CVM 阶段进行分类的。我们引入了一个名为 DC-YOLOv5 的模型,该模型基于 YOLOv5 针对 CVM 的特定特征进行了优化。这种优化包括用 Wise-IOU 代替原始的边界框回归损失计算方法,以解决 Complete-IOU(CIOU)中垂直和水平损失相互干扰的问题,这使得模型的收敛变得具有挑战性。我们还引入了 Res-dcn-head 模块结构,以增强对小目标特征的关注,提高模型对细微样本差异的敏感性。此外,我们引入了卷积块注意力模块(CBAM)双通道注意力机制,以增强对关键特征的关注和理解,从而提高目标检测的准确性和效率。损失函数、精度、召回率、平均精度(mAP)和 F1 分数被用作主要的算法评估指标,以评估这些模型的性能。此外,我们尝试使用梯度类激活映射(CAM)技术分析对模型预测重要的区域。DC-YOLOv5 模型对 CVM 识别的最终 F1 分数分别为 0.993、0.994 用于 mAp0.5 和 0.943 用于 mAp0.5:0.95,其收敛速度更快,检测结果更准确,更稳健,比其他四个模型具有更高的准确性和稳健性。DC-YOLOv5 算法在 CVM 识别中表现出较高的准确性和稳健性,为快速准确的 CVM 识别提供了有力支持,对医疗领域和临床诊断的发展具有积极影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验