Department of Radiology, Jeju National University School of Medicine, Jeju Natuional University Hospital, Jeju, Republic of Korea.
Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.
PLoS One. 2024 Aug 12;19(8):e0305859. doi: 10.1371/journal.pone.0305859. eCollection 2024.
This study aimed to develop an algorithm for the automatic detecting chest percutaneous catheter drainage (PCD) and evaluating catheter positions on chest radiographs using deep learning.
This retrospective study included 1,217 chest radiographs (proper positioned: 937; malpositioned: 280) from a total of 960 patients underwent chest PCD from October 2017 to February 2023. The tip location of the chest PCD was annotated using bounding boxes and classified as proper positioned and malpositioned. The radiographs were randomly allocated into the training, validation sets (total: 1,094 radiographs; proper positioned: 853 radiographs; malpositioned: 241 radiographs), and test datasets (total: 123 radiographs; proper positioned: 84 radiographs; malpositioned: 39 radiographs). The selected AI model was used to detect the catheter tip of chest PCD and evaluate the catheter's position using the test dataset to distinguish between properly positioned and malpositioned cases. Its performance in detecting the catheter and assessing its position on chest radiographs was evaluated by per radiographs and per instances. The association between the position and function of the catheter during chest PCD was evaluated.
In per chest radiographs, the selected model's accuracy was 0.88. The sensitivity and specificity were 0.86 and 0.92, respectively. In per instance, the selected model's the mean Average Precision 50 (mAP50) was 0.86. The precision and recall were 0.90 and 0.79 respectively. Regarding the association between the position and function of the catheter during chest PCD, its sensitivity and specificity were 0.93 and 0.95, respectively.
The artificial intelligence model for the automatic detection and evaluation of catheter position during chest PCD on chest radiographs demonstrated acceptable diagnostic performance and could assist radiologists and clinicians in the early detection of catheter malposition and malfunction during chest percutaneous catheter drainage.
本研究旨在开发一种基于深度学习的自动检测胸部经皮穿刺引流(PCD)并评估胸部 X 光片中导管位置的算法。
这项回顾性研究纳入了 2017 年 10 月至 2023 年 2 月期间共 960 例接受胸部 PCD 的患者的 1217 张胸部 X 光片(位置正确:937 张;位置不当:280 张)。使用边界框对胸部 PCD 的尖端位置进行标注,并将其分类为位置正确和位置不当。X 光片被随机分配到训练集、验证集(总:1094 张 X 光片;位置正确:853 张 X 光片;位置不当:241 张 X 光片)和测试数据集(总:123 张 X 光片;位置正确:84 张 X 光片;位置不当:39 张 X 光片)。选择 AI 模型用于检测胸部 PCD 的导管尖端,并使用测试数据集评估导管位置,以区分位置正确和位置不当的病例。通过每张 X 光片和每个实例评估其在检测 X 光片上的导管和评估其位置的性能。评估了在胸部 PCD 期间导管的位置和功能之间的关系。
在每张 X 光片方面,所选模型的准确率为 0.88。灵敏度和特异度分别为 0.86 和 0.92。在每个实例方面,所选模型的平均精度 50(mAP50)为 0.86。精度和召回率分别为 0.90 和 0.79。关于在胸部 PCD 期间导管位置和功能之间的关系,其灵敏度和特异度分别为 0.93 和 0.95。
基于深度学习的自动检测和评估胸部 X 光片中胸部 PCD 导管位置的人工智能模型具有可接受的诊断性能,可帮助放射科医生和临床医生在早期发现胸部经皮穿刺引流导管的位置不当和功能障碍。