Lakhani Paras, Flanders Adam, Gorniak Richard
Department of Radiology, Thomas Jefferson University Hospital, Sidney Kimmel Jefferson Medical College, 132 S 10th St, Philadelphia, PA 19107.
Radiol Artif Intell. 2020 Nov 18;3(1):e200026. doi: 10.1148/ryai.2020200026. eCollection 2021 Jan.
To determine the efficacy of deep learning in assessing endotracheal tube (ETT) position on radiographs.
In this retrospective study, 22 960 de-identified frontal chest radiographs from 11 153 patients (average age, 60.2 years ± 19.9 [standard deviation], 55.6% men) between 2010 and 2018 containing an ETT were placed into 12 categories, including bronchial insertion and distance from the carina at 1.0-cm intervals (0.0-0.9 cm, 1.0-1.9 cm, etc), and greater than 10 cm. Images were split into training (80%, 18 368 images), validation (10%, 2296 images), and internal test (10%, 2296 images), derived from the same institution as the training data. One hundred external test radiographs were also obtained from a different hospital. The Inception V3 deep neural network was used to predict ETT-carina distance. ETT-carina distances and intraclass correlation coefficients (ICCs) for the radiologists and artificial intelligence (AI) system were calculated on a subset of 100 random internal and 100 external test images. Sensitivity and specificity were calculated for low and high ETT position thresholds.
On the internal and external test images, respectively, the ICCs of AI and radiologists were 0.84 (95% CI: 0.78, 0.92) and 0.89 (95% CI: 0.77, 0.94); the ICCs of the radiologists were 0.93 (95% CI: 0.90, 0.95) and 0.84 (95% CI: 0.71, 0.90). The AI model was 93.9% sensitive (95% CI: 90.0, 96.7) and 97.7% specific (95% CI: 96.9, 98.3) for detecting ETT-carina distance less than 1 cm.
Deep learning predicted ETT-carina distance within 1 cm in most cases and showed excellent interrater agreement compared with radiologists. The model was sensitive and specific in detecting low ETT positions.© RSNA, 2020.
确定深度学习在评估X线片上气管内插管(ETT)位置的有效性。
在这项回顾性研究中,将2010年至2018年间来自11153例患者(平均年龄60.2岁±19.9[标准差],男性占55.6%)的22960张去识别化的胸部正位X线片(包含ETT)分为12类,包括支气管插入情况以及与隆突的距离,间隔为1.0 cm(0.0 - 0.9 cm、1.0 - 1.9 cm等),以及大于10 cm。图像被分为训练集(80%,18368张图像)、验证集(10%,2296张图像)和内部测试集(10%,2296张图像),这些图像与训练数据来自同一机构。还从另一家医院获取了100张外部测试X线片。使用Inception V3深度神经网络预测ETT与隆突的距离。在100张随机选择的内部测试图像和100张外部测试图像的子集中,计算放射科医生和人工智能(AI)系统的ETT与隆突距离及组内相关系数(ICC)。计算低和高ETT位置阈值的敏感性和特异性。
在内部和外部测试图像上,AI与放射科医生的ICC分别为0.84(95%CI:0.78,0.92)和0.89(95%CI:0.77,0.94);放射科医生之间的ICC分别为两组为0.93(95%CI:0.90,0.95)和0.84(95%CI:0.71,0.90)。AI模型检测ETT与隆突距离小于1 cm时的敏感性为93.9%(95%CI:90.0,96.7),特异性为97.7%(95%CI:96.9,98.3)。
深度学习在大多数情况下能预测ETT与隆突距离在1 cm以内,与放射科医生相比显示出良好的观察者间一致性。该模型在检测低ETT位置时具有敏感性和特异性。©RSNA,2020。