Suppr超能文献

使用人工智能对胸部X光片上中心静脉导管尖端位置进行分类

Classification of Central Venous Catheter Tip Position on Chest X-ray Using Artificial Intelligence.

作者信息

Jung Seungkyo, Oh Jaehoon, Ryu Jongbin, Kim Jihoon, Lee Juncheol, Cho Yongil, Yoon Myeong Seong, Jeong Ji Young

机构信息

Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea.

HY-Medical Image and Data Artificial Intelligence System (MIDAS) LAB, Hanyang University, Seoul 133791, Korea.

出版信息

J Pers Med. 2022 Oct 3;12(10):1637. doi: 10.3390/jpm12101637.

Abstract

Recent studies utilizing deep convolutional neural networks (CNN) have described the central venous catheter (CVC) on chest radiography images. However, there have been no studies for the classification of the CVC tip position with a definite criterion on the chest radiograph. This study aimed to develop an algorithm for the automatic classification of proper depth with the application of automatic segmentation of the trachea and the CVC on chest radiographs using a deep CNN. This was a retrospective study that used plain chest supine anteroposterior radiographs. The trachea and CVC were segmented on images and three labels (shallow, proper, and deep position) were assigned based on the vertical distance between the tracheal carina and CVC tip. We used a two-stage approach model for the automatic segmentation of the trachea and CVC with U-net and automatic classification of CVC placement with EfficientNet B4. The primary outcome was a successful three-label classification through five-fold validations with segmented images and a test with segmentation-free images. Of a total of 808 images, 207 images were manually segmented and the overall accuracy of the five-fold validation for the classification of three-class labels (mean (SD)) of five-fold validation was 0.76 (0.03). In the test for classification with 601 segmentation-free images, the average accuracy, precision, recall, and F1-score were 0.82, 0.73, 0.73, and 0.73, respectively. We achieved the highest accuracy value of 0.91 in the shallow position label, while the highest F1-score was 0.82 in the deep position label. A deep CNN can achieve a comparative performance in the classification of the CVC position based on the distance from the carina to the CVC tip as well as automatic segmentation of the trachea and CVC on plain chest radiographs.

摘要

最近利用深度卷积神经网络(CNN)的研究已经描述了胸部X光片图像上的中心静脉导管(CVC)。然而,尚无关于在胸部X光片上依据明确标准对CVC尖端位置进行分类的研究。本研究旨在开发一种算法,通过使用深度CNN对胸部X光片上的气管和CVC进行自动分割,来自动分类合适的深度。这是一项回顾性研究,使用胸部仰卧前后位平片。在图像上对气管和CVC进行分割,并根据气管隆突与CVC尖端之间的垂直距离分配三个标签(浅、合适和深位置)。我们使用一种两阶段方法模型,通过U-net对气管和CVC进行自动分割,并使用EfficientNet B4对CVC放置进行自动分类。主要结果是通过对分割图像进行五折验证以及对无分割图像进行测试,成功实现三标签分类。在总共808张图像中,207张图像进行了手动分割,五折验证对三类标签分类的总体准确率(均值(标准差))为0.76(0.03)。在对601张无分割图像进行分类的测试中,平均准确率、精确率、召回率和F1分数分别为0.82、0.73、0.73和0.73。我们在浅位置标签中获得了最高准确率值0.91,而在深位置标签中最高F1分数为0.82。基于从隆突到CVC尖端的距离,深度CNN在CVC位置分类以及胸部平片上气管和CVC的自动分割方面能够取得相当的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f17/9605589/d6f588862806/jpm-12-01637-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验