Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany.
Phys Med Biol. 2024 Sep 13;69(18). doi: 10.1088/1361-6560/ad6e4f.
This work explores the enhancement of ionization clustering and its radial dependence around a gold nanoparticle (NP), indicative of the induction of DNA lesions, a potential trigger for cell-death.Monte Carlo track structure simulations were performed to determine (a) the spectral fluence of incident photons and electrons in water around a gold NP under charged particle equilibrium conditions and (b) the density of ionization clusters produced on average as well as conditional on the occurrence of at least one interaction in the NP using Associated Volume Clustering. Absorbed dose was determined for comparison with a recent benchmark intercomparison. Reported quantities are normalized to primary fluence, allowing to establish a connection to macroscopic dosimetric quantities.The modification of the electron spectral fluence by the gold NP is minor and mainly occurs at low energies. The net fluence of electrons emitted from the NP is dominated by electrons resulting from photon interactions. Similar to the known dose enhancement, increased ionization clustering is limited to a distance from the NP surface of up to200nm. The number of clusters per energy imparted is increased at distances of up to150nm, and accordingly the enhancement in clustering notably surpasses that of dose enhancement. Smaller NPs cause noticeable peaks in the conditional frequency of clusters between50nm-100nmfrom the NP surface.This work shows that low energy electrons emitted by NPs lead to an increase of ionization clustering in their vicinity exceeding that of energy imparted. While the electron component of the radiation field plays an important role in determining the background contribution to ionization clustering and energy imparted, the dosimetric effects of NPs are governed by the interplay of secondary electron production by photon interaction and their ability to leave the NP.
这项工作探讨了金纳米粒子(NP)周围的电离簇合增强及其径向依赖性,这表明 DNA 损伤的诱导,这是细胞死亡的潜在触发因素。通过蒙特卡罗轨迹结构模拟,确定了(a)在带电粒子平衡条件下,NP 周围水中的入射光子和电子的光谱通量,以及(b)使用关联体积聚类平均产生的电离簇的密度以及至少在 NP 中发生一次相互作用的条件下产生的电离簇的密度。吸收剂量是为了与最近的基准比较而确定的。报告的数量是归一化到初级通量的,允许与宏观剂量学数量建立联系。金 NP 对电子光谱通量的修正很小,主要发生在低能量。从 NP 发射的电子的净通量主要由光子相互作用产生的电子主导。与已知的剂量增强类似,增加的电离簇合仅限于 NP 表面最多 200nm 的距离。每个能量传递的簇数量在距离 NP 表面最多 150nm 处增加,并且因此簇合的增强明显超过剂量增强。较小的 NPs 在 NP 表面 50nm-100nm 之间的距离处会引起簇合的条件频率的明显峰值。这项工作表明,NP 发射的低能电子会导致其附近的电离簇合增加,超过能量传递的程度。虽然辐射场的电子分量在确定电离簇合和能量传递的背景贡献方面起着重要作用,但 NPs 的剂量学效应受光子相互作用产生的二次电子及其离开 NP 的能力的相互作用控制。