Department of Pathology, Yale University, New Haven, CT 06519, USA; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.
Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA.
Acta Biomater. 2024 Sep 15;186:85-94. doi: 10.1016/j.actbio.2024.08.011. Epub 2024 Aug 10.
Bone extracellular matrix (ECM) has been shown to mimic aspects of the tissue's complex microenvironment, suggesting its potential role in promoting bone repair. However, current ECM-based therapies suffer from limitations such as inefficient scale-up, lack of mechanical integrity, and sub-optimal efficacy. Here, we fabricated hydrogels from decellularized ECM (dECM) from wild type (WT) and thrombospondin-2 knock-out (TSP2KO) mouse bones. TSP2KO bone ECM hydrogel was found to have distinct mechanical properties and collagen fibril assembly from WT. Furthermore, TSP2KO hydrogel promoted mesenchymal stem cell (MSC) attachment, spreading, and invasion in vitro. Similarly, it promoted formation of tube-like structures by human umbilical vein endothelial cells (HUVECs). When applied to a murine calvarial defect model, TSP2KO hydrogel enhanced repair, in part, due to increased angiogenesis. Our study suggests the pro-angiogenic therapeutic potential of TSP2KO bone ECM hydrogel in bone repair. STATEMENT OF SIGNIFICANCE: The study describes the first successful preparation of a novel hydrogel made from decellularized bones from wild-type mice and mice lacking thrombospondin-2 (TSP2). Hydrogels from TSP2 knock-out (TSP2KO) bones have unique characteristics in structure and biomechanics. These gels interacted well with cells in vitro and helped repair damaged bone in a mouse model. Therefore, TSP2KO bone-derived hydrogel has translational potential for accelerating repair of bone defects that are otherwise difficult to heal. This study not only creates a new material with promise for accelerated healing, but also validates tunability of native biomaterials by genetic engineering.
骨细胞外基质 (ECM) 已被证明可以模拟组织复杂微环境的某些方面,这表明其在促进骨修复方面具有潜在作用。然而,目前基于 ECM 的治疗方法存在效率低下、缺乏机械完整性和效果不理想等局限性。在这里,我们从野生型 (WT) 和血小板反应蛋白 2 敲除 (TSP2KO) 小鼠的脱细胞 ECM (dECM) 中制造了水凝胶。发现 TSP2KO 骨 ECM 水凝胶具有与 WT 不同的机械特性和胶原纤维组装。此外,TSP2KO 水凝胶在体外促进间充质干细胞 (MSC) 的附着、铺展和侵袭。同样,它促进了人脐静脉内皮细胞 (HUVEC) 形成管状结构。当应用于小鼠颅骨缺损模型时,TSP2KO 水凝胶增强了修复,部分原因是血管生成增加。我们的研究表明 TSP2KO 骨 ECM 水凝胶在骨修复中的促血管生成治疗潜力。
本研究首次成功制备了一种由野生型和缺乏血小板反应蛋白 2 (TSP2) 的小鼠脱细胞骨制成的新型水凝胶。TSP2 敲除 (TSP2KO) 骨的水凝胶在结构和生物力学方面具有独特的特征。这些凝胶在体外与细胞相互作用良好,并有助于修复小鼠模型中的受损骨骼。因此,TSP2KO 骨衍生水凝胶具有加速修复难以愈合的骨缺损的转化潜力。本研究不仅创造了一种具有加速愈合前景的新材料,而且通过基因工程验证了天然生物材料的可调节性。