Suppr超能文献

瞳孔测量作为姿势控制的生物标志物:深度学习模型揭示了对平衡任务强度增加的特定于侧别的瞳孔反应。

Pupillometry as a biomarker of postural control: Deep-learning models reveal side-specific pupillary responses to increased intensity of balance tasks.

机构信息

Faculty of Health Sciences, University of Primorska, Koper, Slovenia.

Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Psychophysiology. 2024 Dec;61(12):e14667. doi: 10.1111/psyp.14667. Epub 2024 Aug 12.

Abstract

Pupillometry has been used in the studies of postural control to assess cognitive load during dual tasks, but its response to increased balance task intensity has not been investigated. Furthermore, it is unknown whether side-specific changes in pupil diameter occur with more demanding balance tasks providing additional insights into postural control. The two aims of this study were to analyze differences in steady-state pupil diameter between balance tasks with increased intensity and to determine whether there are side-specific changes. Forty-eight healthy subjects performed parallel and left and right one-legged stances on a force plate with and without foam with right and left pupil diameters measured with a mobile infrared eye-tracker. Differences between balance tasks in parameters (average pupil diameter of each eye, average of both pupil diameters and the difference between the left and right pupil diameter) were analyzed using a two-way repeated measures analysis of variance, and deep learning neural network models were used to investigate how pupillometry predicted each balance task. The pupil diameter of the left eye, the average pupil diameter of both eyes and the difference in pupil diameters increased statistically significantly from simpler to more demanding balance tasks, with this being more pronounced for the left eye. The deep learning neural network models revealed side-specific changes in pupil diameter with more demanding balance tasks. This study confirms pupillary responses to increased intensity of balance task and indicates side-specific pupil responses that could be related to task-specific involvement of higher levels of postural control.

摘要

瞳孔测量法已被用于姿势控制研究中,以评估双重任务期间的认知负荷,但尚未研究其对平衡任务强度增加的反应。此外,尚不清楚在更具挑战性的平衡任务中,瞳孔直径是否会出现特定于一侧的变化,从而为姿势控制提供更多的见解。本研究的两个目的是分析在增加强度的平衡任务之间的瞳孔直径的稳态差异,并确定是否存在特定于一侧的变化。48 名健康受试者在力板上进行平行和左右单腿站立,同时使用移动红外眼动追踪器测量有和没有泡沫的情况下右眼和左眼的瞳孔直径。使用双向重复测量方差分析分析了平衡任务中参数(每只眼睛的平均瞳孔直径、两只眼睛的平均瞳孔直径和左右瞳孔直径之间的差异)之间的差异,并使用深度学习神经网络模型来研究瞳孔测量法如何预测每个平衡任务。从简单到更具挑战性的平衡任务,左眼、双眼平均瞳孔直径和瞳孔直径差异的瞳孔直径均呈统计学显著增加,左眼更为明显。深度学习神经网络模型显示,在更具挑战性的平衡任务中,瞳孔直径存在特定于一侧的变化。本研究证实了瞳孔对平衡任务强度增加的反应,并表明瞳孔对特定于一侧的反应可能与姿势控制的特定于任务的更高水平的参与有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1b/11579225/7699a7b27836/PSYP-61-e14667-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验