Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
Tissue Eng Part A. 2024 Oct;30(19-20):662-680. doi: 10.1089/ten.TEA.2024.0067. Epub 2024 Sep 12.
Biomaterials often have subtle properties that ultimately drive their bespoke performance. Given this nuanced structure-function behavior, the standard scientific approach of one experiment at a time or design of experiment methods is largely inefficient for the discovery of complex biomaterials. More recently, high-throughput experimentation coupled with machine learning methods has matured beyond expert users allowing scientists and engineers from diverse backgrounds to access these powerful data science tools. As a result, we now have the opportunity to strategically utilize all available data from high-throughput experiments to train efficacious models and map the structure-function behavior of biomaterials for their discovery. Herein, we discuss this necessary shift to data-driven determination of structure-function properties of biomaterials as we highlight how machine learning is leveraged in identifying physicochemical cues for biomaterials in tissue engineering, gene delivery, drug delivery, protein stabilization, and antifouling materials. We also discuss data-mining approaches that are coupled with machine learning to map biomaterial functions that reduce the load on experimental approaches for faster biomaterial discovery. Ultimately, harnessing the prowess of machine learning will lead to accelerated discovery and development of optimal biomaterial designs.
生物材料通常具有微妙的特性,这些特性最终决定了它们的特殊性能。鉴于这种细微的结构-功能行为,一次进行一个实验或设计实验方法的标准科学方法对于发现复杂的生物材料来说效率很低。最近,高通量实验与机器学习方法相结合,已经超越了专家用户的水平,使得来自不同背景的科学家和工程师都能够使用这些强大的数据科学工具。因此,我们现在有机会从高通量实验中战略性地利用所有可用数据来训练有效的模型,并绘制生物材料的结构-功能行为,以实现其发现。在此,我们讨论了这种将生物材料的结构-功能特性从数据驱动的角度来确定的必要转变,同时强调了机器学习在识别组织工程、基因传递、药物传递、蛋白质稳定和防污材料中生物材料的物理化学线索方面的应用。我们还讨论了与机器学习相结合的数据挖掘方法,这些方法可以映射生物材料的功能,从而减少对实验方法的依赖,加快生物材料的发现。最终,利用机器学习的强大功能将加速最佳生物材料设计的发现和开发。