Suppr超能文献

城市树木对 PM 的选择性捕获:叶片蜡质组成和生理特性在空气质量改善中的作用。

Selective capture of PM by urban trees: The role of leaf wax composition and physiological traits in air quality enhancement.

机构信息

School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China.

School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.

出版信息

J Hazard Mater. 2024 Oct 5;478:135428. doi: 10.1016/j.jhazmat.2024.135428. Epub 2024 Aug 4.

Abstract

Human health risks from particles with a diameter of less than 2.5 µm (PM) highlight the role of urban trees as bio-filters in air pollution control. However, whether the size and composition of particles captured by various tree species differ or not remain unclear. This study investigates how leaf attributes affect the capture of PM, which can penetrate deep into the lungs and pose significant health risks. Using a self-developed particulate matter (PM) resuspension chamber and single-particle aerosol mass spectrometer, we measured the size distribution and mass spectra of particles captured by ten tree species. Notably, Cinnamomum camphora (L.) J.Presl and Osmanthus fragrans Lour. are more effective at capturing particles under 1 µm, which are most harmful because they can reach the alveoli, whereas Ginkgo biloba L. and Platanus × acerifolia (Aiton) Willd. tend to capture larger particles, up to 1.6 µm, which are prone to being trapped in the upper respiratory tract. Leaf physiological traits such as stomatal conductance and water potential significantly enhance the capture of larger particles. The Adaptive Resonance Theory neural network (ART-2a) algorithm classified a large number of single particles to determine their composition. Results indicate distinct inter-species variations in chemical composition of particles captured by leaves. Moreover, we identified how specific leaf wax compositions-beyond the known sticky nature of hydrophobic waxes-contribute to particle adhesion, particularly highlighting the roles of fatty acids and alkanes in adhering particles rich in organic carbon and heavy metals, respectively. This research advances our understanding by linking leaf physiological and wax characteristics to the selective capture of PM, providing actionable insights for urban forestry management. The detailed exploration of particle size and composition, tied to specific tree species, enriches the current literature by quantifying how and why different species contribute variably to air quality improvement. This adds a crucial layer of specificity to the general knowledge that trees serve as bio-filters, offering a refined strategy for planting urban trees based on their particulate capture profiles.

摘要

人体健康风险来自直径小于 2.5 µm(PM)的颗粒,这突显了城市树木作为空气污染控制生物过滤器的作用。然而,不同树种捕获的颗粒的大小和组成是否不同尚不清楚。本研究调查了叶片属性如何影响 PM 的捕获,PM 可以深入肺部并带来重大健康风险。我们使用自行开发的颗粒物(PM)再悬浮室和单颗粒气溶胶质谱仪,测量了十种树木捕获的颗粒的大小分布和质谱。值得注意的是,樟(Cinnamomum camphora(L.)J.Presl)和桂花(Osmanthus fragrans Lour.)更有效地捕获小于 1 µm 的颗粒,因为这些颗粒最有害,因为它们可以到达肺泡,而银杏(Ginkgo biloba L.)和悬铃木(Platanus ×acerifolia(Aiton)Willd.)则倾向于捕获更大的颗粒,最大可达 1.6 µm,这些颗粒容易被困在上呼吸道。叶片生理特性,如气孔导度和水势,显著增强了对更大颗粒的捕获。自适应共振理论神经网络(ART-2a)算法对大量单颗粒进行分类,以确定它们的组成。结果表明,叶片捕获的颗粒的化学组成存在明显的种间差异。此外,我们确定了特定的叶蜡组成——超出已知的疏水蜡的粘性性质——如何有助于颗粒粘附,特别是强调脂肪酸和烷烃在分别粘附富含有机碳和重金属的颗粒方面的作用。这项研究通过将叶片生理和蜡特性与 PM 的选择性捕获联系起来,为城市林业管理提供了可行的见解,从而推进了我们的理解。详细探索颗粒大小和组成与特定树种的关系,通过量化不同物种如何以及为何不同程度地为空气质量改善做出贡献,丰富了当前的文献。这为树木作为生物过滤器的一般知识增加了一个关键的特异性层面,为根据其颗粒物捕获特性种植城市树木提供了一种精细化策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验