Mu Lan, Zhao Gang, Zhang Baojie, Liao Wenbo, Zhao Ning, Xu Xijin
School of Physics and Technology, University of Jinan, Jinan 250022, PR China.
School of Physics and Technology, University of Jinan, Jinan 250022, PR China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):68-78. doi: 10.1016/j.jcis.2024.08.039. Epub 2024 Aug 8.
Nickel-iron layered double hydroxide (NiFe-LDH) is hindered in its further development in water splitting due to its slow kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, the synthesis of OER (FeO(OH)/NiFe-LDH) and HER (FeS(NiS)/NiFe-LDH) catalysts endowed with inherent electric fields exhibited exceptional electrocatalytic properties. The presence of the built-in electric field modulated the redistribution of electrons within the catalyst, while the formation of a heterostructure preserved the intrinsic characteristics of the catalyst. Moreover, this electron redistribution optimized the catalyst's adsorption of reaction intermediates (O*, OH*, OOH*, and H*) during the catalytic process, thereby enhancing the performance of both OER and HER. The electrolytic cell, equipped with these catalysts, achieved the current density of 10 mA cm at a remarkably low potential of 1.409 V under industrial temperature conditions and demonstrated an ultra-long-term stability of 200 h.
镍铁层状双氢氧化物(NiFe-LDH)因其析氧反应(OER)和析氢反应(HER)的动力学缓慢而在水分解方面的进一步发展受到阻碍。在本研究中,具有固有电场的OER催化剂(FeO(OH)/NiFe-LDH)和HER催化剂(FeS(NiS)/NiFe-LDH)的合成展现出卓越的电催化性能。内置电场的存在调节了催化剂内电子的重新分布,而异质结构的形成保留了催化剂的固有特性。此外,这种电子重新分布优化了催化剂在催化过程中对反应中间体(O*、OH*、OOH和H)的吸附,从而提高了OER和HER的性能。配备这些催化剂的电解池在工业温度条件下,于1.409 V的极低电位下实现了10 mA cm的电流密度,并展现出200 h的超长期稳定性。