Suppr超能文献

利他主义海鸥优化算法可用于选择用于预测良恶性肺结节的放射组学特征。

Altruistic seagull optimization algorithm enables selection of radiomic features for predicting benign and malignant pulmonary nodules.

机构信息

National Key Lab of Autonomous Intelligent Unmanned Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China.

Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.

出版信息

Comput Biol Med. 2024 Sep;180:108996. doi: 10.1016/j.compbiomed.2024.108996. Epub 2024 Aug 12.

Abstract

Accurately differentiating indeterminate pulmonary nodules remains a significant challenge in clinical practice. This challenge becomes increasingly formidable when dealing with the vast radiomic features obtained from low-dose computed tomography, a lung cancer screening technique being rolling out in many areas of the world. Consequently, this study proposed the Altruistic Seagull Optimization Algorithm (AltSOA) for the selection of radiomic features in predicting the malignancy risk of pulmonary nodules. This innovative approach incorporated altruism into the traditional seagull optimization algorithm to seek a global optimal solution. A multi-objective fitness function was designed for training the pulmonary nodule prediction model, aiming to use fewer radiomic features while ensuring prediction performance. Among global radiomic features, the AltSOA identified 11 interested features, including the gray level co-occurrence matrix. This automatically selected panel of radiomic features enabled precise prediction (area under the curve = 0.8383 (95 % confidence interval 0.7862-0.8863)) of the malignancy risk of pulmonary nodules, surpassing the proficiency of radiologists. Furthermore, the interpretability, clinical utility, and generalizability of the pulmonary nodule prediction model were thoroughly discussed. All results consistently underscore the superiority of the AltSOA in predicting the malignancy risk of pulmonary nodules. And the proposed malignant risk prediction model for pulmonary nodules holds promise for enhancing existing lung cancer screening methods. The supporting source codes of this work can be found at: https://github.com/zzl2022/PBMPN.

摘要

准确区分肺部不确定结节仍然是临床实践中的重大挑战。当处理从世界许多地区正在推广的肺癌筛查技术——低剂量计算机断层扫描获得的大量放射组学特征时,这一挑战变得更加艰巨。因此,本研究提出了利他海鸥优化算法(AltSOA),用于选择放射组学特征以预测肺结节的恶性风险。这种创新方法将利他主义纳入传统海鸥优化算法中,以寻求全局最优解。设计了一个多目标适应度函数来训练肺结节预测模型,旨在使用更少的放射组学特征的同时保证预测性能。在全局放射组学特征中,AltSOA 确定了 11 个感兴趣的特征,包括灰度共生矩阵。该自动选择的放射组学特征面板能够对肺结节的恶性风险进行精确预测(曲线下面积=0.8383(95%置信区间 0.7862-0.8863)),超过了放射科医生的水平。此外,还深入讨论了肺结节预测模型的可解释性、临床实用性和泛化能力。所有结果都一致强调了 AltSOA 在预测肺结节恶性风险方面的优越性。并且提出的肺结节恶性风险预测模型有望增强现有的肺癌筛查方法。这项工作的支持源代码可以在:https://github.com/zzl2022/PBMPN 找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验