Suppr超能文献

基于生理特征的深度时间插值和聚类网络识别急性疾病表型。

Identifying acute illness phenotypes via deep temporal interpolation and clustering network on physiologic signatures.

机构信息

Intelligent Clinical Care Center, University of Florida, Gainesville, FL, USA.

Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, PO Box 100224, Gainesville, FL, 32610-0254, USA.

出版信息

Sci Rep. 2024 Apr 10;14(1):8442. doi: 10.1038/s41598-024-59047-x.

Abstract

Using clustering analysis for early vital signs, unique patient phenotypes with distinct pathophysiological signatures and clinical outcomes may be revealed and support early clinical decision-making. Phenotyping using early vital signs has proven challenging, as vital signs are typically sampled sporadically. We proposed a novel, deep temporal interpolation and clustering network to simultaneously extract latent representations from irregularly sampled vital signs and derive phenotypes. Four distinct clusters were identified. Phenotype A (18%) had the greatest prevalence of comorbid disease with increased prevalence of prolonged respiratory insufficiency, acute kidney injury, sepsis, and long-term (3-year) mortality. Phenotypes B (33%) and C (31%) had a diffuse pattern of mild organ dysfunction. Phenotype B's favorable short-term clinical outcomes were tempered by the second highest rate of long-term mortality. Phenotype C had favorable clinical outcomes. Phenotype D (17%) exhibited early and persistent hypotension, high incidence of early surgery, and substantial biomarker incidence of inflammation. Despite early and severe illness, phenotype D had the second lowest long-term mortality. After comparing the sequential organ failure assessment scores, the clustering results did not simply provide a recapitulation of previous acuity assessments. This tool may impact triage decisions and have significant implications for clinical decision-support under time constraints and uncertainty.

摘要

利用聚类分析进行早期生命体征分析,可以揭示具有独特病理生理特征和临床结局的独特患者表型,并为早期临床决策提供支持。使用早期生命体征进行表型分析具有挑战性,因为生命体征通常是随机采样的。我们提出了一种新颖的深度时间插值和聚类网络,可从不规则采样的生命体征中同时提取潜在表示,并得出表型。确定了四个不同的聚类。表型 A(18%)的合并症患病率最高,呼吸功能不全延长、急性肾损伤、败血症和长期(3 年)死亡率的患病率增加。表型 B(33%)和表型 C(31%)的器官功能障碍呈弥漫模式。表型 B 的短期临床结局良好,但长期死亡率第二高。表型 C 的临床结局良好。表型 D(17%)表现为早期持续低血压、早期手术发生率高,以及大量炎症生物标志物的发生。尽管早期病情严重,但表型 D 的长期死亡率第二低。在比较序贯器官衰竭评估评分后,聚类结果并没有简单地重复之前的严重程度评估。该工具可能会影响分诊决策,并对时间限制和不确定性下的临床决策支持具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4843/11006654/a7eb1c01ce79/41598_2024_59047_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验