Cheng Li, Lv Xiang, Ding Degong, Yang Lei, Yang Deren, Yu Xuegong
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310014, People's Republic of China.
Nanotechnology. 2024 Sep 5;35(47). doi: 10.1088/1361-6528/ad6e8d.
Surface-structured engineering of hyperdoped silicon can effectively facilitate the absorption of sub-bandgap photons in pristine single-crystal silicon (sc-Si). Here, we conducted different annealing approaches of ordinary thermal annealing (OTA) and nanosecond laser annealing (NLA) on modification of titanium-hyperdoped silicon (Si:Ti) surface structure, to achieve efficient near-infrared detection. It is presented that both OTA and NLA processes can improve the crystallinity of Si:Ti samples. In detail, atomic-resolved STEM characterization illustrates that NLA treatment will further eliminate the amorphous phase on Si:Ti surface to varying degrees. While one-dimensional periodic stacking fault structure of 9R-Si phase is formed at the surface of sc-Si and embedded in the Si matrix during the OTA process, which reveals the seamless interface of 9R-Si/sc-Si along with [11¯0] direction. Due to the high sub-bandgap light absorption and good crystal structure, the Si:Ti photodetector after NLA treatment with an energy density of 2.6 J cmexhibited the highest responsivity, reaching 151 mA Wat 1550 nm even at a low operating voltage of 1 V. We assume the performance enhancement of NLA processed Si:Ti photodetectors can be attributed to two aspects, the one is NLA can reduce the recombination of photo-generated charge carriers in amorphous surface layer by improving crystallization, and the other is that NLA process can weaken the diffusion of titanium impurities due to the extremely rapid heating and cooling rates. This study presents prospects towards surface-structured silicon in infrared light detection.
超掺杂硅的表面结构工程能够有效促进原始单晶硅(sc-Si)对亚带隙光子的吸收。在此,我们对钛超掺杂硅(Si:Ti)表面结构的改性采用了普通热退火(OTA)和纳秒激光退火(NLA)这两种不同的退火方法,以实现高效的近红外探测。结果表明,OTA和NLA工艺都能提高Si:Ti样品的结晶度。具体而言,原子分辨STEM表征表明,NLA处理会在不同程度上进一步消除Si:Ti表面的非晶相。而在OTA过程中,sc-Si表面形成了9R-Si相的一维周期性堆垛层错结构并嵌入Si基体中,这揭示了9R-Si/sc-Si沿[11¯0]方向的无缝界面。由于高亚带隙光吸收和良好的晶体结构,能量密度为2.6 J/cm²的NLA处理后的Si:Ti光电探测器表现出最高的响应度,即使在1 V的低工作电压下,在1550 nm处也达到了151 mA/W。我们认为NLA处理的Si:Ti光电探测器性能增强可归因于两个方面,一是NLA可以通过改善结晶来减少非晶表面层中光生载流子复合,二是NLA工艺由于极快的加热和冷却速率可以减弱钛杂质的扩散。本研究展示了表面结构化硅在红外光探测方面的前景。