Suppr超能文献

用硒超掺杂硅:固相法与液相外延法。

Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

机构信息

Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden, Germany.

1] Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden, Germany [2] Technische Universität Dresden, 01062 Dresden, Germany.

出版信息

Sci Rep. 2015 Feb 9;5:8329. doi: 10.1038/srep08329.

Abstract

Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

摘要

硫属元素超掺杂硅在基于硅的红外探测器和中带隙太阳能电池中有潜在的应用。由于硫属元素在硅中的固溶度极限较低,这些材料以前是通过飞秒或纳秒激光辐照注入硅或裸硅在特定背景气体中实现的。在硅表面沉积的高能量密度导致形成液相,快速再结晶速度允许硫属元素被捕获到硅基体中。然而,这种方法遇到了表面偏析的问题。在本文中,我们提出了一种在毫秒范围内的闪光灯退火的固相处理方法,该方法介于传统的快速热退火和脉冲激光退火之间。闪光灯退火硒注入硅显示出约 70%的替位分数,注入浓度高达 2.3%。电阻率较低,载流子迁移率高于纳秒脉冲激光退火样品。我们的结果表明,闪光灯退火在防止表面偏析和提高可扩展性方面优于激光退火。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc1f/4321182/80753c1996e5/srep08329-f1.jpg

相似文献

1
Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.
Sci Rep. 2015 Feb 9;5:8329. doi: 10.1038/srep08329.
4
Synergic Effect of N and Se Facilitates Photoelectric Performance in Co-Hyperdoped Silicon.
Nanomaterials (Basel). 2024 Oct 2;14(19):1591. doi: 10.3390/nano14191591.
6
Selenium segregation in femtosecond-laser hyperdoped silicon revealed by electron tomography.
Microsc Microanal. 2013 Jun;19(3):716-25. doi: 10.1017/S1431927613000342. Epub 2013 Apr 10.
7
Extended defects formation in nanosecond laser-annealed ion implanted silicon.
Nano Lett. 2014;14(4):1769-75. doi: 10.1021/nl4042438. Epub 2014 Mar 13.
8
Au-Hyperdoped Si Nanolayer: Laser Processing Techniques and Corresponding Material Properties.
Materials (Basel). 2023 Jun 16;16(12):4439. doi: 10.3390/ma16124439.
10
Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing.
Materials (Basel). 2020 Mar 20;13(6):1408. doi: 10.3390/ma13061408.

引用本文的文献

1
P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation.
Nanomaterials (Basel). 2024 Jun 22;14(13):1069. doi: 10.3390/nano14131069.
2
Solution-based low-temperature synthesis of germanium nanorods and nanowires.
Monatsh Chem. 2018;149(8):1315-1320. doi: 10.1007/s00706-018-2191-1. Epub 2018 May 2.
3
Direct Synthesis of Hyperdoped Germanium Nanowires.
ACS Nano. 2018 Feb 27;12(2):1236-1241. doi: 10.1021/acsnano.7b07248. Epub 2018 Jan 30.
4
Room-temperature short-wavelength infrared Si photodetector.
Sci Rep. 2017 Mar 6;7:43688. doi: 10.1038/srep43688.
5
Ultra-doped n-type germanium thin films for sensing in the mid-infrared.
Sci Rep. 2016 Jun 10;6:27643. doi: 10.1038/srep27643.

本文引用的文献

1
Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin.
Phys Rev Lett. 2012 Jan 13;108(2):026401. doi: 10.1103/PhysRevLett.108.026401. Epub 2012 Jan 11.
2
Insulator-to-metal transition in sulfur-doped silicon.
Phys Rev Lett. 2011 Apr 29;106(17):178701. doi: 10.1103/PhysRevLett.106.178701. Epub 2011 Apr 25.
3
4
Solute trapping: Comparison of theory with experiment.
Phys Rev Lett. 1986 Jun 9;56(23):2489-2492. doi: 10.1103/PhysRevLett.56.2489.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验