Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
Sci Rep. 2024 Aug 13;14(1):18749. doi: 10.1038/s41598-024-68805-w.
This study aimed to (1) replicate a deep-learning-based model for cerebral aneurysm segmentation in TOF-MRAs, (2) improve the approach by testing various fully automatic pre-processing pipelines, and (3) rigorously validate the model's transferability on independent, external test-datasets. A convolutional neural network was trained on 235 TOF-MRAs acquired on local scanners from a single vendor to segment intracranial aneurysms. Different pre-processing pipelines including bias field correction, resampling, cropping and intensity-normalization were compared regarding their effect on model performance. The models were tested on independent, external same-vendor and other-vendor test-datasets, each comprised of 70 TOF-MRAs, including patients with and without aneurysms. The best-performing model achieved excellent results on the external same-vendor test-dataset, surpassing the results of the previous publication with an improved sensitivity (0.97 vs. ~ 0.86), a higher Dice score coefficient (DSC, 0.60 ± 0.25 vs. 0.53 ± 0.31), and an improved false-positive rate (0.87 ± 1.35 vs. ~ 2.7 FPs/case). The model further showed excellent performance in the external other-vendor test-datasets (DSC 0.65 ± 0.26; sensitivity 0.92, 0.96 ± 2.38 FPs/case). Specificity was 0.38 and 0.53, respectively. Raising the voxel-size from 0.5 × 0.5×0.5 mm to 1 × 1×1 mm reduced the false-positive rate seven-fold. This study successfully replicated core principles of a previous approach for detecting and segmenting cerebral aneurysms in TOF-MRAs with a robust, fully automatable pre-processing pipeline. The model demonstrated robust transferability on two independent external datasets using TOF-MRAs from the same scanner vendor as the training dataset and from other vendors. These findings are very encouraging regarding the clinical application of such an approach.
(1) 复制基于深度学习的 TOF-MRA 中脑动脉瘤分割模型,(2) 通过测试各种全自动预处理管道来改进该方法,(3) 严格验证模型在独立的外部测试数据集上的可转移性。在本地扫描仪上从单个供应商处获取的 235 个 TOF-MRA 上训练卷积神经网络,以分割颅内动脉瘤。比较了不同的预处理管道,包括偏置场校正、重采样、裁剪和强度归一化,以了解它们对模型性能的影响。模型在独立的外部同供应商和其他供应商的测试数据集上进行了测试,每个数据集均由 70 个 TOF-MRA 组成,包括有和无动脉瘤的患者。表现最好的模型在外部同供应商测试数据集上取得了优异的结果,超过了之前的研究结果,灵敏度提高(0.97 对约 0.86),Dice 评分系数(DSC)更高(0.60 ± 0.25 对 0.53 ± 0.31),假阳性率降低(0.87 ± 1.35 对约 2.7 FPs/病例)。该模型在外部其他供应商测试数据集上也表现出了优异的性能(DSC 0.65 ± 0.26;灵敏度 0.92,0.96 ± 2.38 FPs/病例)。特异性分别为 0.38 和 0.53。将体素大小从 0.5×0.5×0.5mm 提高到 1×1×1mm 可将假阳性率降低七倍。本研究成功复制了以前的基于深度学习的方法的核心原则,该方法用于检测和分割 TOF-MRA 中的脑动脉瘤,并具有强大的全自动预处理管道。该模型在两个独立的外部数据集上表现出了很强的可转移性,这两个数据集使用的是训练数据集和其他供应商的相同扫描仪供应商的 TOF-MRA。这些发现对于此类方法的临床应用非常令人鼓舞。