Department of Ophthalmology and Visual Sciences and Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Int J Epidemiol. 2024 Aug 14;53(5). doi: 10.1093/ije/dyae111.
Disease latency is defined as the time from disease initiation to disease diagnosis. Disease latency bias (DLB) can arise in epidemiological studies that examine latent outcomes, since the exact timing of the disease inception is unknown and might occur before exposure initiation, potentially leading to bias. Although DLB can affect epidemiological studies that examine different types of chronic disease (e.g. Alzheimer's disease, cancer etc), the manner by which DLB can introduce bias into these studies has not been previously elucidated. Information on the specific types of bias, and their structure, that can arise secondary to DLB is critical for researchers, to enable better understanding and control for DLB.
Here we describe four scenarios by which DLB can introduce bias (through different structures) into epidemiological studies that address latent outcomes, using directed acyclic graphs (DAGs). We also discuss potential strategies to better understand, examine and control for DLB in these studies.
Using causal diagrams, we show that disease latency bias can affect results of epidemiological studies through: (i) unmeasured confounding; (ii) reverse causality; (iii) selection bias; (iv) bias through a mediator.
Disease latency bias is an important bias that can affect a number of epidemiological studies that address latent outcomes. Causal diagrams can assist researchers better identify and control for this bias.
疾病潜伏期是指从疾病开始到诊断的时间。在研究潜在结果的流行病学研究中,可能会出现疾病潜伏期偏倚(DLB),因为疾病起始的确切时间未知,并且可能发生在暴露开始之前,从而导致偏倚。尽管 DLB 可能会影响研究不同类型慢性疾病(例如阿尔茨海默病、癌症等)的流行病学研究,但 DLB 如何引入这些研究中的偏倚的方式尚未阐明。关于由于 DLB 而产生的具体类型的偏倚及其结构的信息对于研究人员来说至关重要,以便更好地理解和控制 DLB。
在这里,我们使用有向无环图(DAG)描述了 DLB 通过四种情况将偏倚(通过不同的结构)引入研究潜在结果的流行病学研究中。我们还讨论了在这些研究中更好地理解、检查和控制 DLB 的潜在策略。
使用因果图,我们表明疾病潜伏期偏倚可以通过以下方式影响流行病学研究的结果:(i)未测量的混杂;(ii)反向因果关系;(iii)选择偏倚;(iv)通过中介物的偏倚。
疾病潜伏期偏倚是一种重要的偏倚,会影响许多研究潜在结果的流行病学研究。因果图可以帮助研究人员更好地识别和控制这种偏倚。