Iakovlev Nikolay, Schiffers Florian A, Tapia Santiago L, Shen Daming, Hong KyungPyo, Markl Michael, Lee Daniel C, Katsaggelos Aggelos K, Kim Daniel
IEEE Trans Biomed Eng. 2025 Jan;72(1):187-197. doi: 10.1109/TBME.2024.3443635. Epub 2025 Jan 15.
Highly-undersampled, dynamic MRI reconstruction, particularly in multi-coil scenarios, is a challenging inverse problem. Unrolled networks achieve state-of-the-art performance in MRI reconstruction but suffer from long training times and extensive GPU memory cost.
In this work, we propose a novel training strategy for IMplicit UNrolled NEtworks (IMUNNE) for highly-undersampled, multi-coil dynamic MRI reconstruction. It formulates the MRI reconstruction problem as an implicit fixed-point equation and leverages gradient approximation for backpropagation, enabling training of deep architectures with fixed memory cost. This study represents the first application of implicit network theory in the context of real-time cine MRI. The proposed method is evaluated using a prospectively undersampled, real-time cine dataset using radial k-space sampling, comprising balanced steady-state free precession (b-SSFP) readouts. Experiments include a hyperparameter search, head-to-head comparisons with a complex U-Net (CU-Net) and an alternating unrolled network (Alt-UN), and an analysis of robustness under noise perturbations; peak signal-to-noise ratio, structural similarity index, normalized root mean-square error, spatio-temporal entropic difference, and a blur metric were used.
IMUNNE produced significantly and slightly better image quality compared to CU-Net and Alt-UN, respectively. Compared with Alt-UN, IMUNNE significantly reduced training and inference times, making it a promising approach for highly-accelerated, multi-coil real-time cine MRI reconstruction.
IMUNNE strategy successfully applies unrolled networks to image reconstruction of highly-accelerated, real-time radial cine MRI.
Implicit training enables rapid, high-quality, and cost-effective CMR exams by reducing training and inference times and lowering memory cost associated with advanced reconstruction methods.
高度欠采样的动态磁共振成像(MRI)重建,尤其是在多线圈情况下,是一个具有挑战性的逆问题。展开式网络在MRI重建中取得了最优性能,但存在训练时间长和GPU内存消耗大的问题。
在这项工作中,我们提出了一种用于高度欠采样、多线圈动态MRI重建的隐式展开网络(IMUNNE)的新型训练策略。它将MRI重建问题表述为一个隐式不动点方程,并利用梯度近似进行反向传播,从而能够以固定的内存成本训练深度架构。本研究是隐式网络理论在实时电影MRI中的首次应用。所提出的方法使用前瞻性欠采样的实时电影数据集进行评估,该数据集采用径向k空间采样,包括平衡稳态自由进动(b-SSFP)读出。实验包括超参数搜索、与复杂U-Net(CU-Net)和交替展开网络(Alt-UN)的直接比较,以及噪声扰动下的鲁棒性分析;使用了峰值信噪比、结构相似性指数、归一化均方根误差、时空熵差和模糊度量。
与CU-Net和Alt-UN相比,IMUNNE分别显著和略微提高了图像质量。与Alt-UN相比,IMUNNE显著减少了训练和推理时间,使其成为高度加速、多线圈实时电影MRI重建的一种有前途的方法。
IMUNNE策略成功地将展开式网络应用于高度加速的实时径向电影MRI的图像重建。
隐式训练通过减少训练和推理时间以及降低与先进重建方法相关的内存成本,实现了快速、高质量且经济高效的心脏磁共振成像(CMR)检查。