Suppr超能文献

NeRP:用于稀疏采样图像重建的具有先验嵌入的隐式神经表示学习

NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction.

作者信息

Shen Liyue, Pauly John, Xing Lei

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jun 3;PP. doi: 10.1109/TNNLS.2022.3177134.

Abstract

Image reconstruction is an inverse problem that solves for a computational image based on sampled sensor measurement. Sparsely sampled image reconstruction poses additional challenges due to limited measurements. In this work, we propose a methodology of implicit Neural Representation learning with Prior embedding (NeRP) to reconstruct a computational image from sparsely sampled measurements. The method differs fundamentally from previous deep learning-based image reconstruction approaches in that NeRP exploits the internal information in an image prior and the physics of the sparsely sampled measurements to produce a representation of the unknown subject. No large-scale data is required to train the NeRP except for a prior image and sparsely sampled measurements. In addition, we demonstrate that NeRP is a general methodology that generalizes to different imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). We also show that NeRP can robustly capture the subtle yet significant image changes required for assessing tumor progression.

摘要

图像重建是一个逆问题,它基于采样的传感器测量值求解计算图像。由于测量有限,稀疏采样图像重建带来了额外的挑战。在这项工作中,我们提出了一种具有先验嵌入的隐式神经表示学习(NeRP)方法,用于从稀疏采样测量中重建计算图像。该方法与以前基于深度学习的图像重建方法有根本区别,因为NeRP利用图像先验中的内部信息和稀疏采样测量的物理特性来生成未知对象的表示。除了先验图像和稀疏采样测量外,不需要大规模数据来训练NeRP。此外,我们证明NeRP是一种通用方法,可以推广到不同的成像模态,如计算机断层扫描(CT)和磁共振成像(MRI)。我们还表明,NeRP可以稳健地捕捉评估肿瘤进展所需的细微但显著的图像变化。

相似文献

8
Diffusion Posterior Sampling for Nonlinear CT Reconstruction.用于非线性CT重建的扩散后验采样
Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3007693. Epub 2024 Apr 1.

引用本文的文献

本文引用的文献

2
Deep low-Rank plus sparse network for dynamic MR imaging.深度低秩稀疏网络用于动态磁共振成像。
Med Image Anal. 2021 Oct;73:102190. doi: 10.1016/j.media.2021.102190. Epub 2021 Jul 24.
3
Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems.动量网络:用于反问题的快速收敛迭代神经网络。
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4915-4931. doi: 10.1109/TPAMI.2020.3012955. Epub 2023 Mar 10.
7
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
8
Neural scene representation and rendering.神经场景表示与渲染。
Science. 2018 Jun 15;360(6394):1204-1210. doi: 10.1126/science.aar6170.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验