Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Nature. 2024 Aug;632(8026):841-849. doi: 10.1038/s41586-024-07799-x. Epub 2024 Aug 14.
Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization. However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning and how they relate to behaviour. Here we characterized the representational geometry of populations of neurons (single units) recorded in the hippocampus, amygdala, medial frontal cortex and ventral temporal cortex of neurosurgical patients performing an inferential reasoning task. We found that only the neural representations formed in the hippocampus simultaneously encode several task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consists of disentangled directly observable and discovered latent task variables. Learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behaviour suggests that abstract and disentangled representational geometries are important for complex cognition.
人类具有快速适应不断变化的环境的非凡认知能力。这种能力的核心是形成高级、抽象的表示形式的能力,这些表示形式利用世界的规律性来支持泛化。然而,对于这些表示形式如何在神经元群体中编码、如何通过学习出现以及如何与行为相关,我们知之甚少。在这里,我们描述了在执行推理任务的神经外科患者的海马体、杏仁核、内侧前额叶皮质和腹侧颞叶皮质中记录的神经元群体(单个单元)的表示几何形状。我们发现,只有在海马体中形成的神经表示形式才能以抽象或解缠的格式同时编码几个任务变量。这种表示几何形状仅在患者学会执行推理后才会被观察到,并且由解缠的直接可观察和发现的潜在任务变量组成。通过反复试验或通过口头指令来学习执行推理会导致海马体表示形式形成具有相似几何性质的表示形式。所观察到的表示形式和推理行为之间的关系表明,抽象和解缠的表示几何形状对于复杂认知很重要。