Golbabaei Ali, Coelho Cesar A O, de Snoo Mitchell L, Josselyn Sheena A, Frankland Paul W
Program in Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Canada.
Institute for Medical Science, University of Toronto, Toronto, Canada.
bioRxiv. 2025 Jun 6:2025.06.05.658072. doi: 10.1101/2025.06.05.658072.
Memories for events (i.e., episodic memories) change qualitatively with time. Systems consolidation theories posit that organizational changes accompany qualitative shifts in memory resolution, but differ as to the locus of this reorganization. Whereas some theories favor inter-regional changes in organization (e.g., hippocampus→cortex; multiple trace theory), others favor intra-regional reorganization (e.g., within-hippocampus; trace transformation theory). Using an engram tagging and manipulation approach in mice, here we provide evidence that intra-regional changes in organization underlie shifts in memory resolution. We establish that contextual fear memories lose resolution as a function of time, with mice exhibiting conditioned freezing in both the training apparatus (context A) and a second apparatus (context B) at more remote delays (freezing ≡ freezing at remote delay). By tagging either hippocampal (dentate gyrus) or cortical (prelimbic cortex) neuronal ensembles in context A, and then pairing their optogenetic activation with shock (in context C), we monitored the resolution of these artificially-generated memories at recent versus remote post-conditioning delays by testing mice in contexts A and B. Hippocampal engrams for a fear conditioning event were initially high-resolution (recent delay: freezing >> freezing) but lost resolution with time (remote delay: freezing ≡ freezing). In contrast, cortical engrams were initially low-resolution and remained low-resolution over time (recent and remote delay: freezing ≡ freezing). Transformation of hippocampal engrams was dependent on adult hippocampal neurogenesis. Eliminating hippocampal neurogenesis arrested hippocampal engrams in a recent-like, high-resolution state where mice continued to exhibit discriminative freezing at remote delays.
事件记忆(即情景记忆)会随时间发生质性变化。系统巩固理论认为,组织变化伴随着记忆分辨率的质性转变,但在这种重组发生的位置上存在分歧。一些理论支持区域间的组织变化(例如,海马体→皮层;多重痕迹理论),而另一些理论则支持区域内的重组(例如,海马体内;痕迹转换理论)。在这里,我们使用小鼠的记忆印记标记和操纵方法,提供证据表明区域内的组织变化是记忆分辨率转变的基础。我们确定,情境恐惧记忆会随时间失去分辨率,在更久远的延迟时间里,小鼠在训练装置(情境A)和第二个装置(情境B)中均表现出条件性僵住(僵住≡在久远延迟时僵住)。通过在情境A中标记海马体(齿状回)或皮层(前边缘皮层)的神经元集群,然后将它们的光遗传学激活与电击配对(在情境C中),我们通过在情境A和B中测试小鼠,监测了这些人工生成的记忆在条件化后近期与久远延迟时的分辨率。恐惧条件化事件的海马体记忆印记最初具有高分辨率(近期延迟:僵住>>在情境B中僵住),但随时间失去分辨率(久远延迟:僵住≡在情境B中僵住)。相比之下,皮层记忆印记最初分辨率较低,且随时间保持低分辨率(近期和久远延迟:僵住≡在情境B中僵住)。海马体记忆印记的转变依赖于成年海马体神经发生。消除海马体神经发生会使海马体记忆印记停滞在类似近期的高分辨率状态,此时小鼠在久远延迟时仍继续表现出辨别性僵住。