Li Xing, Sun Yingshu, Wang Yilin, Zhou Ye, Bao Yixuan, Zhang Zhuomiao, Liu Shujing, Yang Huini, Zhang Ruoyao, Xia Peng, Ji Meiju, Hou Peng, Chen Chao
Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
Curr Med Chem. 2025;32(2):380-395. doi: 10.2174/0109298673300702240805055930.
Developing effective methods to enhance tumor radiosensitivity is crucial for improving the therapeutic efficacy of radiotherapy (RT). Due to its deep tissue penetration, excellent safety profile, and precise controllability, sonosensitizer-based sonodynamic therapy (SDT) has recently garnered significant attention as a promising combined approach with RT.
However, the limited reactive oxygen species (ROS) generation ability in the aggregated state and the absence of specific organelle targeting in sonosensitizers hinder their potential to augment RT. This study introduces a fundamental principle guiding the design of high-performance sonosensitizers employed in the aggregated state. Building upon these principles, we develop a mitochondria-targeted sonosensitizer molecule (TCSVP) with aggregation- induced emission (AIE) characteristics by organic synthesis. Then, we demonstrate the abilities of TCSVP to target mitochondria and produce ROS under ultrasound in H460 cancer cells using confocal laser scanning microscopy (CLSM) and fluorescence microscopy. Subsequently, we examine the effectiveness of enhancing tumor radiosensitivity by utilizing TCSVP and ultrasound in both H460 cells and H460 and 4T1 tumor-bearing mice.
The results indicate that evoking non-lethal mitochondrial oxidative stress in tumors by TCSVP under ultrasound stimulation can significantly improve tumor radiosensitivity (p <0.05). Additionally, the safety profile of TCSVP is thoroughly confirmed by histopathological analysis.
This work proposes strategies for designing efficient sonosensitizers and underscores that evoking non-lethal mitochondrial oxidative stress is an effective method to enhance tumor radiosensitivity.
开发有效的方法来提高肿瘤放射敏感性对于提高放射治疗(RT)的疗效至关重要。基于声敏剂的声动力疗法(SDT)由于其深部组织穿透性、出色的安全性和精确的可控性,最近作为一种有前途的与RT联合的方法而备受关注。
然而,声敏剂在聚集状态下产生活性氧(ROS)的能力有限,且缺乏对特定细胞器的靶向性,这阻碍了它们增强RT的潜力。本研究介绍了一种指导聚集状态下高性能声敏剂设计的基本原理。基于这些原理,我们通过有机合成开发了一种具有聚集诱导发光(AIE)特性的线粒体靶向声敏剂分子(TCSVP)。然后,我们使用共聚焦激光扫描显微镜(CLSM)和荧光显微镜在H460癌细胞中证明了TCSVP在超声作用下靶向线粒体并产生活性氧的能力。随后,我们研究了在H460细胞以及H460和4T1荷瘤小鼠中利用TCSVP和超声增强肿瘤放射敏感性的有效性。
结果表明,在超声刺激下,TCSVP在肿瘤中引发非致死性线粒体氧化应激可显著提高肿瘤放射敏感性(p<0.05)。此外,组织病理学分析充分证实了TCSVP的安全性。
这项工作提出了设计高效声敏剂的策略,并强调引发非致死性线粒体氧化应激是提高肿瘤放射敏感性的有效方法。