Tian Jinghan, Xing Shuai, Su Qianmin
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
Heliyon. 2024 Jul 21;10(15):e34057. doi: 10.1016/j.heliyon.2024.e34057. eCollection 2024 Aug 15.
To address the challenges arising from the rapid growth of text data in the biomedical field, including the problems of irrelevant argument interference and deep semantic association neglect in existing event argument detection methods, as well as the difficulty of multiple event extraction. We aim to propose a new event argument detection method that can accurately mine valuable information from biomedical texts through multi-feature fusion and the question-and-answer paradigm, while also addressing the limitations of existing methods.
We propose an event argument detection method based on multi-feature fusion and the question-answer paradigm. First, we split each event in the sentence into an independent question-and-answer format to reduce the complexity of detection. Then, in order to reduce the interference of irrelevant arguments, we use syntactic distance and external prior knowledge to find the corresponding argument prior template for each event type. Next, we introduce the multi-feature attention mechanism to fully explore the deep semantic features. Finally, we formulate post-processing methods for predefined event structures to form final biomedical events.
On the MLEE dataset, our model achieved 62.50% in event extraction of F1 scores, which is superior to other advanced event extraction methods.
Our method achieves good performance in the event extraction task and provides strong support for the mining of valuable information in biomedical texts.
应对生物医学领域文本数据快速增长带来的挑战,包括现有事件论元检测方法中无关论元干扰和深度语义关联被忽视的问题,以及多事件提取的困难。我们旨在提出一种新的事件论元检测方法,该方法能够通过多特征融合和问答范式从生物医学文本中准确挖掘有价值的信息,同时解决现有方法的局限性。
我们提出一种基于多特征融合和问答范式的事件论元检测方法。首先,我们将句子中的每个事件拆分为独立的问答格式,以降低检测的复杂性。然后,为了减少无关论元的干扰,我们使用句法距离和外部先验知识为每种事件类型找到相应的论元先验模板。接下来,我们引入多特征注意力机制以充分探索深度语义特征。最后,我们为预定义的事件结构制定后处理方法,以形成最终的生物医学事件。
在MLEE数据集上,我们的模型在事件提取的F1分数上达到了62.50%,优于其他先进的事件提取方法。
我们的方法在事件提取任务中取得了良好的性能,为生物医学文本中有价值信息的挖掘提供了有力支持。