Sebek Jan, Goh Steven, Beard Warren L, Biller David S, Hodgson David S, Highland Margaret A, Smith Abbe, Hemphill Nicholas, Yu Kun-Chang, Myers Renelle A, Lam Stephen, Wibowo Henky, Prakash Punit
Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA.
PhenoMapper, LLC, San Jose, CA, USA.
Biomed Hub. 2024 Jul 22;9(1):108-117. doi: 10.1159/000539864. eCollection 2024 Jan-Dec.
Percutaneous microwave ablation (MWA) is clinically accepted for the treatment of lung tumors and oligometastatic disease. Bronchoscopic MWA is under development and evaluation in the clinical setting. We previously reported on the development of a bronchoscopy-guided MWA system integrated with clinical virtual bronchoscopy and navigation and demonstrated the feasibility of transbronchial MWA, using a maximum power of 60 W at the catheter input. Here, we assessed the performance of bronchoscopy-guided MWA with an improved catheter (maximum power handling of up to 120 W) in normal porcine lung in vivo (as in the previous study).
A total of 8 bronchoscopy-guided MWA were performed ( = 2 pigs; 4 ablations per pig) with power levels of 90 W and 120 W applied for 5 and 10 min, respectively. Virtual bronchoscopy planning and navigation guided transbronchial or endobronchial positioning of the MWA applicator for ablation of lung parenchyma. Following completion of ablations and post-procedure CT imaging, the lungs were harvested and sectioned for gross and histopathologic ablation analysis.
Bronchoscopy-guided MWA with applied energy levels of 90 W/5 min and 120 W/10 min yielded ablation zones with short-axis diameters in the range of 20-28 mm (56-116% increase) as compared to ∼13 mm from our previous study (60 W/10 min). Histology of higher-power and previous lower-power ablations was consistent, including a central necrotic zone, a thermal fixation zone with intact tissue architecture, and a hemorrhagic periphery. Catheter positioning and its confirmation via intra-procedural 3D imaging (e.g., cone-beam CT) proved to be critical for ablation consistency.
Bronchoscopy-guided MWA with an improved catheter designed for maximum power 120 W yields large ablations in normal porcine lung in vivo.
经皮微波消融(MWA)在临床上已被认可用于治疗肺部肿瘤和寡转移疾病。支气管镜下MWA正在临床环境中进行开发和评估。我们之前报道了一种与临床虚拟支气管镜和导航系统集成的支气管镜引导下MWA系统的开发,并证明了经支气管MWA的可行性,在导管输入端使用的最大功率为60W。在此,我们在正常猪肺体内评估了使用改进导管(最大功率处理能力高达120W)的支气管镜引导下MWA的性能(与之前的研究相同)。
共进行了8次支气管镜引导下的MWA(n = 2头猪;每头猪进行4次消融),分别以90W和120W的功率水平施加5分钟和10分钟。虚拟支气管镜规划和导航引导MWA消融器经支气管或支气管内定位以消融肺实质。消融完成后及术后CT成像后,取出肺脏并切片进行大体和组织病理学消融分析。
与我们之前的研究(60W/10分钟)中约13mm的短轴直径相比,施加90W/5分钟和120W/10分钟能量水平的支气管镜引导下MWA产生的消融区短轴直径在20 - 28mm范围内(增加56 - 116%)。更高功率和之前较低功率消融的组织学表现一致,包括中央坏死区、组织结构完整的热固定区和出血性周边区。通过术中三维成像(如锥形束CT)进行导管定位及其确认对于消融的一致性至关重要。
使用设计用于最大功率120W的改进导管进行支气管镜引导下MWA可在正常猪肺体内产生较大的消融区。