Suppr超能文献

使用活微生物形态和混合微生物分类器的数据预测微生物。

Predicting microbe organisms using data of living micro forms of life and hybrid microbes classifier.

机构信息

Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.

School of Computer Science, University College Dublin, Dublin, Ireland.

出版信息

PLoS One. 2023 Apr 20;18(4):e0284522. doi: 10.1371/journal.pone.0284522. eCollection 2023.

Abstract

Microbe organisms make up approximately 60% of the earth's living matter and the human body is home to millions of microbe organisms. Microbes are microbial threats to health and may lead to several diseases in humans like toxoplasmosis and malaria. The microbiological toxoplasmosis disease in humans is widespread, with a seroprevalence of 3.6-84% in sub-Saharan Africa. This necessitates an automated approach for microbe organisms detection. The primary objective of this study is to predict microbe organisms in the human body. A novel hybrid microbes classifier (HMC) is proposed in this study which is based on a decision tree classifier and extra tree classifier using voting criteria. Experiments involve different machine learning and deep learning models for detecting ten different living microforms of life. Results suggest that the proposed HMC approach achieves a 98% accuracy score, 98% geometric mean score, 97% precision score, and 97% Cohen Kappa score. The proposed model outperforms employed models, as well as, existing state-of-the-art models. Moreover, the k-fold cross-validation corroborates the results as well. The research helps microbiologists identify the type of microbe organisms with high accuracy and prevents many diseases through early detection.

摘要

微生物约占地球生物总量的 60%,而人体则是数百万种微生物的家园。微生物对健康构成威胁,可能导致人体患上多种疾病,如弓形体病和疟疾。人类微生物弓形虫病的流行范围很广,撒哈拉以南非洲的血清流行率为 3.6-84%。这就需要一种自动化的微生物检测方法。本研究的主要目的是预测人体中的微生物。本研究提出了一种新的混合微生物分类器(HMC),它基于决策树分类器和使用投票标准的额外树分类器。实验涉及不同的机器学习和深度学习模型,用于检测十种不同的生命活体微生物。结果表明,所提出的 HMC 方法的准确率达到 98%,几何平均值达到 98%,精确率达到 97%,Cohen Kappa 得分达到 97%。所提出的模型优于所使用的模型以及现有的最先进模型。此外,k 折交叉验证也证实了这一结果。该研究有助于微生物学家以高精度识别微生物的类型,通过早期检测预防许多疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c81a/10118187/86fe2a2eee37/pone.0284522.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验