Suppr超能文献

未经训练的物理驱动像差检索网络。

Untrained physics-driven aberration retrieval network.

作者信息

Li Shuo, Wang Bin, Wang Xiaofei

出版信息

Opt Lett. 2024 Aug 15;49(16):4545-4548. doi: 10.1364/OL.523377.

Abstract

In the field of coherent diffraction imaging, phase retrieval is essential for correcting the aberration of an optic system. For estimating aberration from intensity, conventional methods rely on neural networks whose performance is limited by training datasets. In this Letter, we propose an untrained physics-driven aberration retrieval network (uPD-ARNet). It only uses one intensity image and iterates in a self-supervised way. This model consists of two parts: an untrained neural network and a forward physical model for the diffraction of the light field. This physical model can adjust the output of the untrained neural network, which can characterize the inverse process from the intensity to the aberration. The experiments support that our method is superior to other conventional methods for aberration retrieval.

摘要

在相干衍射成像领域,相位恢复对于校正光学系统的像差至关重要。为了从强度估计像差,传统方法依赖于神经网络,其性能受训练数据集的限制。在本信函中,我们提出了一种未经训练的物理驱动像差恢复网络(uPD - ARNet)。它仅使用一幅强度图像并以自监督方式进行迭代。该模型由两部分组成:一个未经训练的神经网络和一个用于光场衍射的正向物理模型。这个物理模型可以调整未经训练的神经网络的输出,该输出能够表征从强度到像差的逆过程。实验表明,我们的方法在像差恢复方面优于其他传统方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验