Suppr超能文献

基于物理模型并结合通道注意力机制的傅里叶叠层显微镜学习方法

Physics-based learning with channel attention for Fourier ptychographic microscopy.

作者信息

Zhang Jizhou, Xu Tingfa, Li Jianan, Zhang Yuhan, Jiang Shenwang, Chen Yiwen, Zhang Jinhua

机构信息

Ministry of Education Key Laboratory of Photoelectronic Imaging Technology and System, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China.

Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China.

出版信息

J Biophotonics. 2022 Mar;15(3):e202100296. doi: 10.1002/jbio.202100296. Epub 2021 Nov 28.

Abstract

Fourier ptychographic microscopy (FPM) is a computational imaging technology for large field-of-view, high resolution and quantitative phase imaging. In FPM, low-resolution intensity images captured with angle-varying illumination are synthesized in Fourier space with phase retrieval approaches. However, system errors such as pupil aberration and light-emitting diode (LED) intensity error seriously affect the reconstruction performance. In this article, we propose a physics-based neural network with channel attention for FPM reconstruction. With the channel attention module, which is introduced into physics-based neural networks for the first time, the spatial distribution of LED intensity can be adaptively corrected. Besides, the channel attention module is used to synthesize different Zernike modes and recover the pupil function. Detailed simulations and experiments are carried out to validate the effectiveness and robustness of the proposed method. The results demonstrate that our method achieves better performance in high-resolution complex field reconstruction, LED intensity correction and pupil function recovery compared with the state-of-art methods. The combination with deep neural network structures like channel attention modules significantly enhance the performance of physics-based neural networks and will promote the application of FPM in practical use.

摘要

傅里叶叠层显微镜(FPM)是一种用于大视场、高分辨率和定量相位成像的计算成像技术。在FPM中,通过相位恢复方法在傅里叶空间中合成利用变角度照明捕获的低分辨率强度图像。然而,诸如光瞳像差和发光二极管(LED)强度误差等系统误差会严重影响重建性能。在本文中,我们提出了一种用于FPM重建的带通道注意力的基于物理的神经网络。通过首次引入基于物理的神经网络的通道注意力模块,可以自适应地校正LED强度的空间分布。此外,通道注意力模块用于合成不同的泽尼克模式并恢复光瞳函数。进行了详细的模拟和实验以验证所提方法的有效性和鲁棒性。结果表明,与现有方法相比,我们的方法在高分辨率复杂场重建、LED强度校正和光瞳函数恢复方面具有更好的性能。与通道注意力模块等深度神经网络结构相结合,显著提高了基于物理的神经网络的性能,并将促进FPM在实际应用中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验