Suppr超能文献

用于固体氧化物燃料电池-膜电极组件的运输友好型微观结构:揭示基于固体氧化物燃料电池离聚物的膜电极组件以提高燃料电池性能。

Transport-Friendly Microstructure in SSC-MEA: Unveiling the SSC Ionomer-Based Membrane Electrode Assemblies for Enhanced Fuel Cell Performance.

作者信息

Li Min, Ding Han, Song Jingnan, Hao Bonan, Zeng Rui, Li Zhenyu, Wu Xuefei, Fink Zachary, Zhou Libo, Russel Thomas P, Liu Feng, Zhang Yongming

机构信息

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Key Lab of Electrical Insulation & Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China.

School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China.

出版信息

Adv Sci (Weinh). 2024 Oct;11(39):e2403647. doi: 10.1002/advs.202403647. Epub 2024 Aug 15.

Abstract

The significant role of the cathodic binder in modulating mass transport within the catalyst layer (CL) of fuel cells is essential for optimizing cell performance. This investigation focuses on enhancing the membrane electrode assembly (MEA) through the utilization of a short-side-chain perfluoro-sulfonic acid (SSC-PFSA) ionomer as the cathode binder, referred to as SSC-MEA. This study meticulously visualizes the distinctive interpenetrating networks of ionomers and catalysts, and explicitly clarifies the triple-phase interface, unveiling the transport-friendly microstructure and transport mechanisms inherent in SSC-MEA. The SSC-MEA exhibits advantageous microstructural features, including a better-connected ionomer network and well-organized hierarchical porous structure, culminating in superior mass transfer properties. Relative to the MEA bonded by long-side-chain perfluoro-sulfonic acid (LSC-PFSA) ionomer, noted as LSC-MEA, SSC-MEA exhibits a notable peak power density (1.23 W cm), efficient O transport, and remarkable proton conductivity (65% improvement) at 65 °C and 70% relativity humidity (RH). These findings establish crucial insights into the intricate morphology-transport-performance relationship in the CL, thereby providing strategic guidance for developing highly efficient MEA.

摘要

阴极粘结剂在调节燃料电池催化剂层(CL)内的传质过程中发挥的重要作用,对于优化电池性能至关重要。本研究聚焦于通过使用短侧链全氟磺酸(SSC-PFSA)离聚物作为阴极粘结剂来增强膜电极组件(MEA),即SSC-MEA。本研究细致地观察了离聚物和催化剂独特的互穿网络,并明确阐明了三相界面,揭示了SSC-MEA固有的有利于传质的微观结构和传质机制。SSC-MEA展现出有利的微观结构特征,包括连接性更好的离聚物网络和有序的分级多孔结构,最终实现卓越的传质性能。相对于由长侧链全氟磺酸(LSC-PFSA)离聚物粘结的MEA(即LSC-MEA),SSC-MEA在65°C和70%相对湿度(RH)下表现出显著的峰值功率密度(1.23 W/cm²)、高效的氧传输以及出色的质子传导率(提高65%)。这些发现为深入了解CL中复杂的形态-传质-性能关系提供了关键见解,从而为开发高效MEA提供了战略指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a95/11496990/de018309a7e4/ADVS-11-2403647-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验