Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy.
BOKU University, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria.
J Inorg Biochem. 2024 Nov;260:112681. doi: 10.1016/j.jinorgbio.2024.112681. Epub 2024 Jul 30.
Iron insertion into porphyrins is an essential step in heme biosynthesis. In the coproporphyrin-dependent pathway, specific to monoderm bacteria, this reaction is catalyzed by the monomeric enzyme coproporphyrin ferrochelatase. In addition to the mechanistic details of the metalation of the porphyrin, the identification of the substrate access channel for ferrous iron to the active site is important to fully understand this enzymatic system. In fact, whether the iron reaches the active site from the distal or the proximal porphyrin side is still under debate. In this study we have thoroughly addressed this question in Listeria monocytogenes coproporphyrin ferrochelatase by X-ray crystallography, steady-state and pre-steady-state imidazole ligand binding studies, together with a detailed spectroscopic characterization using resonance Raman and UV-vis absorption spectroscopies in solution. Analysis of the X-ray structures of coproporphyrin ferrochelatase-coproporphyrin III crystals soaked with ferrous iron shows that iron is present on both sides of the porphyrin. The kinetic and spectroscopic study of imidazole binding to coproporphyrin ferrochelatase‑iron coproporphyrin III clearly indicates the presence of two possible binding sites in this monomeric enzyme that influence each other, which is confirmed by the observed cooperativity at steady-state and a biphasic behavior in the pre-steady-state experiments. The current results are discussed in the context of the entire heme biosynthetic pathway and pave the way for future studies focusing on protein-protein interactions.
铁原子插入卟啉环是血红素生物合成的一个关键步骤。在依赖于粪卟啉原的途径中,这种反应是由单体酶粪卟啉原Ⅲ氧化酶催化的,该途径只存在于单细胞生物中。除了卟啉环的金属化的机制细节外,确定亚铁进入活性位点的底物进入通道对于充分理解这个酶系统也很重要。事实上,铁原子是从卟啉环的远端还是近端进入活性位点仍存在争议。在这项研究中,我们通过 X 射线晶体学、稳态和预稳态咪唑配体结合研究以及详细的光谱学表征(包括共振拉曼和紫外可见吸收光谱),在李斯特菌粪卟啉原Ⅲ氧化酶中彻底解决了这个问题。用亚铁原子浸泡的粪卟啉原Ⅲ氧化酶-粪卟啉原Ⅲ晶体的 X 射线结构分析表明,铁原子存在于卟啉环的两侧。对咪唑与粪卟啉原Ⅲ氧化酶-亚铁粪卟啉原Ⅲ结合的动力学和光谱学研究清楚地表明,在这种单体酶中存在两个可能的相互影响的结合位点,这一点通过稳态下观察到的协同作用和预稳态实验中的两相行为得到了证实。目前的结果在整个血红素生物合成途径的背景下进行了讨论,并为未来关注蛋白质-蛋白质相互作用的研究铺平了道路。