Suppr超能文献

多模型方法在指导危重症患者哌拉西林精准给药中的预测性能。

Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients.

机构信息

Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany.

Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany.

出版信息

Int J Antimicrob Agents. 2024 Oct;64(4):107305. doi: 10.1016/j.ijantimicag.2024.107305. Epub 2024 Aug 13.

Abstract

OBJECTIVES

Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA).

METHODS

Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples).

RESULTS

The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: <25%, <31%, <28%; expected target attainment >77%, >71%, >73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to >90%) when the TDM-sample is integrated within 24 h.

CONCLUSIONS

In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice.

摘要

目的

哌拉西林(PIP)/他唑巴坦是一种常用的抗生素;然而,剂量过高或过低可能导致毒性、治疗失败和抗菌药物耐药性的产生。对 24 个已发表的 PIP 模型的外部评估表明,模型指导下的精准给药(MIPD)可以提高目标达标率。本研究采用多种候选模型,旨在评估不同 MIPD 方法的预测性能,比较(i)单一模型方法、(ii)模型选择算法(MSA)和(iii)模型平均算法(MAA)。

方法

在一项多中心数据集(561 例患者,11 个德国中心,3654 个 TDM 样本)中,评估了考虑每个患者初始(B1)或初始和二次(B2)治疗药物监测(TDM)样本的精密度、准确性和预期目标达标率。

结果

结果表明,在 B1 中,无论候选模型如何,与 MSA 和最佳单模型相比,MAA 在预测性能上略有优势(MAA、MSA、最佳单模型:不准确性±3%、±10%、±8%;不精密度:<25%、<31%、<28%;预期目标达标率>77%、>71%、>73%)。纳入第二个 TDM 样本显著提高了所有 MIPD 方法的精密度和目标达标率,特别是在 MSA 和大多数单模型的情况下。当 TDM 样本在 24 小时内整合时,预期目标达标率可最大化(高达>90%)。

结论

总之,MAA 通过降低为特定患者选择不合适模型的风险,简化了 MIPD。因此,在只有一个样本可用于贝叶斯预测的情况下,使用 MAA 进行 PIP 的 MIPD 可进一步优化重症患者的抗生素暴露,提高预测性能、安全性和在临床实践中的可用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验