Suppr超能文献

人工智能驱动的心电图:肥厚型心肌病管理中的创新

Artificial intelligence-driven electrocardiography: Innovations in hypertrophic cardiomyopathy management.

作者信息

Ordine Leopoldo, Canciello Grazia, Borrelli Felice, Lombardi Raffaella, Di Napoli Salvatore, Polizzi Roberto, Falcone Cristina, Napolitano Brigida, Moscano Lorenzo, Spinelli Alessandra, Masciari Elio, Esposito Giovanni, Losi Maria-Angela

机构信息

Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.

Department of Electrical Engineering and Information Technologies, University Federico II, Naples, Italy.

出版信息

Trends Cardiovasc Med. 2025 Feb;35(2):126-134. doi: 10.1016/j.tcm.2024.08.002. Epub 2024 Aug 13.

Abstract

Hypertrophic Cardiomyopathy (HCM) presents a complex diagnostic and prognostic challenge due to its heterogeneous phenotype and clinical course. Artificial Intelligence (AI) and Machine Learning (ML) techniques hold promise in transforming the role of Electrocardiography (ECG) in HCM diagnosis, prognosis, and management. AI, including Deep Learning (DL), enables computers to learn patterns from data, allowing for the development of models capable of analyzing ECG signals. DL models, such as convolutional neural networks, have shown promise in accurately identifying HCM-related abnormalities in ECGs, surpassing traditional diagnostic methods. In diagnosing HCM, ML models have demonstrated high accuracy in distinguishing between HCM and other cardiac conditions, even in cases with normal ECG findings. Additionally, AI models have enhanced risk assessment by predicting arrhythmic events leading to sudden cardiac death and identifying patients at risk for atrial fibrillation and heart failure. These models incorporate clinical and imaging data, offering a comprehensive evaluation of patient risk profiles. Challenges remain, including the need for larger and more diverse datasets to improve model generalizability and address imbalances inherent in rare event prediction. Nevertheless, AI-driven approaches have the potential to revolutionize HCM management by providing timely and accurate diagnoses, prognoses, and personalized treatment strategies based on individual patient risk profiles. This review explores the current landscape of AI applications in ECG analysis for HCM, focusing on advancements in AI methodologies and their specific implementation in HCM care.

摘要

肥厚型心肌病(HCM)由于其异质性表型和临床病程,在诊断和预后方面面临复杂挑战。人工智能(AI)和机器学习(ML)技术有望改变心电图(ECG)在HCM诊断、预后和管理中的作用。包括深度学习(DL)在内的AI使计算机能够从数据中学习模式,从而开发出能够分析ECG信号的模型。卷积神经网络等DL模型已显示出在准确识别ECG中与HCM相关异常方面的前景,超越了传统诊断方法。在诊断HCM时,ML模型在区分HCM与其他心脏疾病方面已证明具有高准确性,即使在ECG结果正常的情况下也是如此。此外,AI模型通过预测导致心源性猝死的心律失常事件并识别有房颤和心力衰竭风险的患者,增强了风险评估。这些模型纳入了临床和影像数据,对患者风险概况进行全面评估。挑战依然存在,包括需要更大、更多样化的数据集以提高模型的通用性并解决罕见事件预测中固有的不平衡问题。尽管如此,基于AI的方法有潜力通过根据个体患者风险概况提供及时、准确的诊断、预后和个性化治疗策略,彻底改变HCM的管理。本综述探讨了当前AI在HCM心电图分析中的应用情况,重点关注AI方法的进展及其在HCM护理中的具体应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验