Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China.
Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital medical University, Beijing, 100035, China.
Sci Rep. 2024 Aug 15;14(1):18939. doi: 10.1038/s41598-024-69080-5.
Rheumatoid arthritis (RA) and arthrofibrosis (AF) are both chronic synovial hyperplasia diseases that result in joint stiffness and contractures. They shared similar symptoms and many common features in pathogenesis. Our study aims to perform a comprehensive analysis between RA and AF and identify novel drugs for clinical use. Based on the text mining approaches, we performed a correlation analysis of 12 common joint diseases including arthrofibrosis, gouty arthritis, infectious arthritis, juvenile idiopathic arthritis, osteoarthritis, post infectious arthropathies, post traumatic osteoarthritis, psoriatic arthritis, reactive arthritis, rheumatoid arthritis, septic arthritis, and transient arthritis. 5 bulk sequencing datasets and 4 single-cell sequencing datasets of RA and AF were integrated and analyzed. A novel drug repositioning method was found for drug screening, and text mining approaches were used to verify the identified drugs. RA and AF performed the highest gene similarity (0.77) and functional ontology similarity (0.84) among all 12 joint diseases. We figured out that they share the same key pathogenic cell including CD34 + sublining fibroblasts (CD34-SLF) and DKK3 + sublining fibroblasts (DKK3-SLF). Potential therapeutic target database (PTTD) was established with the differential expressed genes (DEGs) of these key pathogenic cells. Based on the PTTD, 15 potential drugs for AF and 16 potential drugs for RA were identified. This work provides a new perspective on AF and RA study which enhances our understanding of their pathogenesis. It also shed light on their underlying mechanism and open new avenues for drug repositioning studies.
类风湿关节炎(RA)和关节纤维组织增生症(AF)均为慢性滑膜增生性疾病,可导致关节僵硬和挛缩。它们在发病机制上具有相似的症状和许多共同特征。我们的研究旨在对 RA 和 AF 进行全面分析,并确定用于临床的新型药物。基于文本挖掘方法,我们对包括关节纤维组织增生症、痛风性关节炎、感染性关节炎、青少年特发性关节炎、骨关节炎、感染后关节病、创伤后骨关节炎、银屑病关节炎、反应性关节炎、类风湿关节炎、化脓性关节炎和一过性关节炎在内的 12 种常见关节疾病进行了相关性分析。整合和分析了 RA 和 AF 的 5 个批量测序数据集和 4 个单细胞测序数据集。发现了一种新的药物重定位方法用于药物筛选,并使用文本挖掘方法验证了所鉴定的药物。RA 和 AF 在所有 12 种关节疾病中的基因相似度(0.77)和功能本体相似度(0.84)最高。我们发现它们具有相同的关键致病细胞,包括 CD34+ 亚膜成纤维细胞(CD34-SLF)和 DKK3+ 亚膜成纤维细胞(DKK3-SLF)。通过这些关键致病细胞的差异表达基因(DEGs)建立了潜在治疗靶点数据库(PTTD)。基于 PTTD,鉴定出 15 种潜在用于 AF 的药物和 16 种潜在用于 RA 的药物。这项工作为 AF 和 RA 的研究提供了新视角,增强了我们对它们发病机制的理解。它还揭示了它们的潜在机制,并为药物重定位研究开辟了新途径。