Suppr超能文献

整合CT影像组学与临床特征以优化肝细胞癌经动脉化疗栓塞术的技术决策

Integrating CT Radiomics and Clinical Features to Optimize TACE Technique Decision-Making in Hepatocellular Carcinoma.

作者信息

Masthoff Max, Irle Maximilian, Kaldewey Daniel, Rennebaum Florian, Morgül Haluk, Pöhler Gesa Helen, Trebicka Jonel, Wildgruber Moritz, Köhler Michael, Schindler Philipp

机构信息

Clinic for Radiology, University of Münster, 48149 Münster, Germany.

Department of Internal Medicine B, University of Münster, 48149 Münster, Germany.

出版信息

Cancers (Basel). 2025 Mar 5;17(5):893. doi: 10.3390/cancers17050893.

Abstract

BACKGROUND/OBJECTIVES: To develop a decision framework integrating computed tomography (CT) radiomics and clinical factors to guide the selection of transarterial chemoembolization (TACE) technique for optimizing treatment response in non-resectable hepatocellular carcinoma (HCC).

METHODS

A retrospective analysis was performed on 151 patients [33 conventional TACE (cTACE), 69 drug-eluting bead TACE (DEB-TACE), 49 degradable starch microsphere TACE (DSM-TACE)] who underwent TACE for HCC at a single tertiary center. Pre-TACE contrast-enhanced CT images were used to extract radiomic features of the TACE-treated liver tumor volume. Patient clinical and laboratory data were combined with radiomics-derived predictors in an elastic net regularized logistic regression model to identify independent factors associated with early response at 4-6 weeks post-TACE. Predicted response probabilities under each TACE technique were compared with the actual techniques performed.

RESULTS

Elastic net modeling identified three independent predictors of response: radiomic feature "Contrast" (OR = 5.80), BCLC stage B (OR = 0.92), and viral hepatitis etiology (OR = 0.74). Interaction models indicated that the relative benefit of each TACE technique depended on the identified patient-specific predictors. Model-based recommendations differed from the actual treatment selected in 66.2% of cases, suggesting potential for improved patient-technique matching.

CONCLUSIONS

Integrating CT radiomics with clinical variables may help identify the optimal TACE technique for individual HCC patients. This approach holds promise for a more personalized therapy selection and improved response rates beyond standard clinical decision-making.

摘要

背景/目的:建立一个整合计算机断层扫描(CT)影像组学和临床因素的决策框架,以指导经动脉化疗栓塞(TACE)技术的选择,从而优化不可切除肝细胞癌(HCC)的治疗反应。

方法

对在单一三级中心接受HCC-TACE治疗的151例患者[33例接受传统TACE(cTACE),69例接受载药微球TACE(DEB-TACE),49例接受可降解淀粉微球TACE(DSM-TACE)]进行回顾性分析。采用TACE术前增强CT图像提取TACE治疗的肝肿瘤体积的影像组学特征。将患者的临床和实验室数据与影像组学衍生的预测因子纳入弹性网络正则化逻辑回归模型,以确定与TACE术后4-6周早期反应相关的独立因素。比较每种TACE技术下的预测反应概率与实际采用的技术。

结果

弹性网络建模确定了三个反应的独立预测因子:影像组学特征“对比度”(OR = 5.80)、BCLC分期B期(OR = 0.92)和病毒性肝炎病因(OR = 0.74)。交互模型表明,每种TACE技术的相对获益取决于所确定的患者特异性预测因子。在66.2%的病例中,基于模型的建议与实际选择的治疗方法不同,这表明改善患者-技术匹配具有潜力。

结论

将CT影像组学与临床变量相结合,可能有助于为个体HCC患者确定最佳的TACE技术。这种方法有望实现更个性化的治疗选择,并提高反应率,超越标准的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c87e/11899091/a2d50f3e3f5d/cancers-17-00893-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验