文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Numerical simulation and mathematical modeling of biomechanical stress distribution in poroelastic tumor tissue via magnetic field and bio-ferro-fluid.

作者信息

Halabian Mahdi, Beigzadeh Borhan, Siavashi Majid

机构信息

Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

Applied Multi-phase Fluid Dynamics Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

Heliyon. 2024 Jul 15;10(14):e34651. doi: 10.1016/j.heliyon.2024.e34651. eCollection 2024 Jul 30.


DOI:10.1016/j.heliyon.2024.e34651
PMID:39149009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11324941/
Abstract

Based on scientific evidence, it seems that bio-magnetic systems can change the process of cancer cell death by affecting the distribution of pressure and mechanical stress in the tumor tissue. Already most of the research has been done experimentally and few mathematical modeling and numerical simulations have been done to investigate the relationship between the magnetic parameters and the mechanical stress of the tumor tissue. This is despite the fact that in order to be able to make new equipment with the help of medical engineering methods, it is definitely necessary that the mathematics governing the problem and changes in the effective magnetic parameters (such as the shape of the magnetic source, magnetic flux density, magnetic source distance and ferro-fluid volume fraction) should be studied as much as possible. In this research, using numerical simulation and mathematical modeling, four common geometrical shapes (rectangular and circular) of the static magnetic field source were used to investigate the relationship between the change of the effective magnetic parameters and the mechanical stress created in the tumor tissue. The results of this research showed that when the magnetic flux density and ferro-fluid volume fraction and also the distance between the magnet and the tissue are kept constant, as well as without spending any extra energy, for a rectangular magnet, just by changing the way the source is placed on the tissue, the average biomechanical stress inside the tumor tissue causes a 25 % change. Also, for a circular magnet, just by doubling the radius of the magnet, the average biomechanical stress inside the tumor tissue causes a 73 % change.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/97f8cd5aa53f/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/4da06b3886d1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/fb32edfec8d5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/995c94bef473/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/dd4d2cd25ee3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/897af14da83e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/f1347530a569/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/ac4572c44d13/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/f1eee8a766ae/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/9f9ca243d271/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/6e7be440e7e0/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/68632edbe706/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/c800045d36e8/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/bf40fcb578fa/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/6a1c49412c02/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/25a3ef603651/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/22d7d14dcedf/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/dc2bd74f6403/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/a57bf70b927a/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/b0a2087982d8/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/97f8cd5aa53f/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/4da06b3886d1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/fb32edfec8d5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/995c94bef473/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/dd4d2cd25ee3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/897af14da83e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/f1347530a569/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/ac4572c44d13/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/f1eee8a766ae/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/9f9ca243d271/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/6e7be440e7e0/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/68632edbe706/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/c800045d36e8/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/bf40fcb578fa/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/6a1c49412c02/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/25a3ef603651/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/22d7d14dcedf/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/dc2bd74f6403/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/a57bf70b927a/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/b0a2087982d8/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d6/11324941/97f8cd5aa53f/gr20.jpg

相似文献

[1]
Numerical simulation and mathematical modeling of biomechanical stress distribution in poroelastic tumor tissue via magnetic field and bio-ferro-fluid.

Heliyon. 2024-7-15

[2]
Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.

J Mech Behav Biomed Mater. 2018-12-15

[3]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[4]
Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.

Comput Methods Programs Biomed. 2017-4

[5]
Numerical modeling of fluid flow in solid tumors.

PLoS One. 2011-6-6

[6]
Oil Displacement by the Magnetic Fluid Inside a Cylindrical Sand-Filled Sample: Experiments and Numerical Simulations.

ACS Omega. 2022-7-21

[7]
A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering.

Meccanica. 2017

[8]
Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation.

Comput Methods Programs Biomed. 2022-6

[9]
[Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2004-5

[10]
An artificially engineered "tumor bio-magnet" for collecting blood-circulating nanoparticles and magnetic hyperthermia.

Biomater Sci. 2019-4-23

本文引用的文献

[1]
Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming.

Cancer Sci. 2024-8

[2]
A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation.

Micromachines (Basel). 2024-3-29

[3]
Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment-The Current State of Knowledge.

Cancers (Basel). 2024-3-14

[4]
Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement.

Int J Pharm X. 2024-1-23

[5]
Static magnetic field assisted thawing improves cryopreservation of mouse whole ovaries.

Bioeng Transl Med. 2023-10-18

[6]
Arresting the G2/M phase empowers synergy in magnetic nanomanipulator-based cancer mechanotherapy and chemotherapy.

J Control Release. 2024-2

[7]
The efficient magneto-mechanical actuation of cancer cells using a very low concentration of non-interacting ferrimagnetic hexaferrite nanoplatelets.

J Colloid Interface Sci. 2024-3

[8]
Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging.

Bioact Mater. 2023-9-29

[9]
Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications.

Nat Commun. 2023-6-20

[10]
Exploiting ferrofluidic wetting for miniature soft machines.

Nat Commun. 2022-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索