Hu Chenlei, Borji Mehdi, Marrero Giovanni J, Kumar Vipin, Weir Jackson A, Kammula Sachin V, Macosko Evan Z, Chen Fei
Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
bioRxiv. 2024 Sep 16:2024.08.05.606465. doi: 10.1101/2024.08.05.606465.
Tissue organization arises from the coordinated molecular programs of cells. Spatial genomics maps cells and their molecular programs within the spatial context of tissues. However, current methods measure spatial information through imaging or direct registration, which often require specialized equipment and are limited in scale. Here, we developed an imaging-free spatial transcriptomics method that uses molecular diffusion patterns to computationally reconstruct spatial data. To do so, we utilize a simple experimental protocol on two dimensional barcode arrays to establish an interaction network between barcodes via molecular diffusion. Sequencing these interactions generates a high dimensional matrix of interactions between different spatial barcodes. Then, we perform dimensionality reduction to regenerate a two-dimensional manifold, which represents the spatial locations of the barcode arrays. Surprisingly, we found that the UMAP algorithm, with minimal modifications can faithfully successfully reconstruct the arrays. We demonstrated that this method is compatible with capture array based spatial transcriptomics/genomics methods, Slide-seq and Slide-tags, with high fidelity. We systematically explore the fidelity of the reconstruction through comparisons with experimentally derived ground truth data, and demonstrate that reconstruction generates high quality spatial genomics data. We also scaled this technique to reconstruct high-resolution spatial information over areas up to 1.2 centimeters. This computational reconstruction method effectively converts spatial genomics measurements to molecular biology, enabling spatial transcriptomics with high accessibility, and scalability.
组织的形成源于细胞间协调的分子程序。空间基因组学可在组织的空间背景下绘制细胞及其分子程序的图谱。然而,目前的方法通过成像或直接配准来测量空间信息,这通常需要专门的设备且在规模上受到限制。在此,我们开发了一种无需成像的空间转录组学方法,该方法利用分子扩散模式通过计算重建空间数据。为此,我们在二维条形码阵列上采用一种简单的实验方案,通过分子扩散在条形码之间建立相互作用网络。对这些相互作用进行测序可生成不同空间条形码之间相互作用的高维矩阵。然后,我们进行降维以重新生成一个二维流形,它代表条形码阵列的空间位置。令人惊讶的是,我们发现只需进行最少修改的UMAP算法就能忠实地成功重建阵列。我们证明该方法与基于捕获阵列的空间转录组学/基因组学方法Slide-seq和Slide-tags具有高保真度的兼容性。我们通过与实验得出的真实数据进行比较,系统地探索了重建的保真度,并证明重建可生成高质量的空间基因组学数据。我们还扩展了这项技术,以在高达1.2厘米的区域上重建高分辨率的空间信息。这种计算重建方法有效地将空间基因组学测量转化为分子生物学,实现了具有高可及性和可扩展性的空间转录组学。