Suppr超能文献

通过DNA条形码邻近图对二维图像进行无光学重建。

Optics-free reconstruction of 2D images via DNA barcode proximity graphs.

作者信息

Liao Hanna, Kottapalli Sanjay, Huang Yuqi, Chaw Matthew, Gehring Jase, Waltner Olivia, Phung-Rojas Melissa, Daza Riza M, Matsen Frederick A, Trapnell Cole, Shendure Jay, Srivatsan Sanjay

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA, USA.

Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.

出版信息

bioRxiv. 2024 Aug 8:2024.08.06.606834. doi: 10.1101/2024.08.06.606834.

Abstract

Spatial genomic technologies include imaging- and sequencing-based methods (1-3). An emerging subcategory of sequencing-based methods relies on a surface coated with coordinate-associated DNA barcodes, which are leveraged to tag endogenous nucleic acids or cells in an overlaid tissue section (4-7). However, the physical registration of DNA barcodes to spatial coordinates is challenging, necessitating either high density printing of coordinate-specific oligonucleotides or sequencing/probing of randomly deposited, oligonucleotide-bearing beads. As a consequence, the surface areas available to sequencing-based spatial genomic methods are constrained by the time, labor, cost, and instrumentation required to either print, synthesize or decode a coordinate-tagged surface. To address this challenge, we developed SCOPE (Spatial reConstruction via Oligonucleotide Proximity Encoding), an optics-free, DNA microscopy (8) inspired method. With SCOPE, the relative positions of randomly deposited beads on a 2D surface are inferred from the sequencing of chimeric molecules formed from diffusing "sender" and tethered "receiver" oligonucleotides. As a first proof-of-concept, we apply SCOPE to reconstruct an asymmetric "swoosh" shape resembling the Nike logo (16.75 × 9.25 mm). Next, we use a microarray printer to encode a "color" version of the Snellen eye chart for visual acuity (17.18 × 40.97 mm), and apply SCOPE to achieve optics-free reconstruction of individual letters. Although these are early demonstrations of the concept and much work remains to be done, we envision that the optics-free, sequencing-based quantitation of the molecular proximities of DNA barcodes will enable spatial genomics in constant experimental time, across fields of view and at resolutions that are determined by sequencing depth, bead size, and diffusion kinetics, rather than the limitations of optical instruments or microarray printers.

摘要

空间基因组技术包括基于成像和测序的方法(1-3)。基于测序的方法中一个新兴的子类别依赖于涂有与坐标相关的DNA条形码的表面,这些条形码被用于标记覆盖组织切片中的内源性核酸或细胞(4-7)。然而,将DNA条形码物理定位到空间坐标具有挑战性,这需要对坐标特异性寡核苷酸进行高密度打印,或者对随机沉积的、带有寡核苷酸的珠子进行测序/探测。因此,基于测序的空间基因组方法可用的表面积受到打印、合成或解码坐标标记表面所需的时间、劳动力、成本和仪器的限制。为了应对这一挑战,我们开发了SCOPE(通过寡核苷酸邻近编码进行空间重建),这是一种无光学、受DNA显微镜启发的方法(8)。使用SCOPE,可以从由扩散的“发送者”和固定的“接收者”寡核苷酸形成的嵌合分子的测序中推断出二维表面上随机沉积的珠子的相对位置。作为第一个概念验证,我们应用SCOPE重建了一个类似耐克标志的不对称“嗖”形(16.75×9.25毫米)。接下来,我们使用微阵列打印机对用于视力的斯内伦视力表的“彩色”版本进行编码(17.18×40.97毫米),并应用SCOPE实现对单个字母的无光学重建。尽管这些只是该概念的早期演示,还有很多工作要做,但我们设想,基于测序的无光学定量DNA条形码分子邻近性将能够在恒定的实验时间内、跨视野以及在由测序深度、珠子大小和扩散动力学决定而非光学仪器或微阵列打印机限制的分辨率下进行空间基因组学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/11326233/16d03e3c932e/nihpp-2024.08.06.606834v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验