Seong Kyungyong, Wei Wei, Sent Sophie C, Vega Brandon, Dee Amanda, Ramirez-Bernardino Griselda, Kumar Rakesh, Parra Lorena, Saur Isabel Ml, Krasileva Ksenia
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany.
bioRxiv. 2025 Feb 11:2024.08.07.607039. doi: 10.1101/2024.08.07.607039.
Pathogen-driven plant diseases cause significant crop losses worldwide. The introgression of intracellular nucleotide-binding leucine-rich repeat receptor (NLR) genes into elite crop cultivars is a common strategy for disease control, yet pathogens rapidly evolve to evade NLR-mediated immunity. The NLR gene protects wheat against stem rust, a devastating disease caused by the fungal pathogen f. sp. (). However, mutations in AvrSr50 allowed to evade Sr50 recognition, leading to resistance breakdown. Advances in protein structure modeling can enable targeted NLR engineering to restore recognition of escaped effectors. Here, we combined iterative computational structural analyses and site-directed mutagenesis to engineer Sr50 recognition of AvrSr50, a effector variant that evades wild-type Sr50 detection. Derived by molecular docking, our initial structural model identified the K711D substitution in Sr50, which partially restored AvrSr50 recognition. Enhancing Sr50 expression via strong promoters compensated for weak recognition and restored robust immune responses. Further structural refinements led to the generation of five double and two triple receptor mutants. These engineered mutants, absent in nature, showed robust dual recognition for AvrSr50 and AvrSr50 in both and wheat protoplasts. Notably, the K711D substitution was essential and synergistic with the additional substitutions for AvrSr50 recognition, demonstrating protein epistasis. Furthermore, this single substitution altered AlphaFold 2 predictions, enabling accurate modeling of the Sr50-AvrSr50 complex structure, consistent with our final structural hypothesis. Collectively, this study outlines a framework for NLR engineering to counteract pathogen adaptation and provides novel Sr50 variants with potential for stem rust resistance.
病原体驱动的植物病害在全球范围内造成了重大的作物损失。将细胞内核苷酸结合富含亮氨酸重复序列受体(NLR)基因导入优良作物品种是一种常见的病害防治策略,但病原体迅速进化以逃避NLR介导的免疫。NLR基因保护小麦免受秆锈病侵害,秆锈病是由真菌病原体禾柄锈菌小麦专化型(Puccinia graminis f. sp. tritici)引起的一种毁灭性病害。然而,AvrSr50中的突变使得该病原体能够逃避Sr50的识别,导致抗性丧失。蛋白质结构建模的进展能够实现有针对性的NLR工程改造,以恢复对逃逸效应子的识别。在这里,我们结合迭代计算结构分析和定点诱变,对AvrSr50进行Sr50识别工程改造,AvrSr50是一种逃避野生型Sr50检测的效应子变体。通过分子对接得到的初始结构模型确定了Sr50中的K711D替换,该替换部分恢复了对AvrSr50的识别。通过强启动子增强Sr50的表达补偿了弱识别并恢复了强大的免疫反应。进一步的结构优化导致产生了五个双受体突变体和两个三受体突变体。这些自然界中不存在的工程突变体在大麦和小麦原生质体中对AvrSr50和AvrSr50表现出强大的双重识别能力。值得注意的是,K711D替换对于AvrSr50识别的额外替换是必不可少的且具有协同作用,证明了蛋白质上位性。此外,这一单替换改变了AlphaFold 2的预测结果,能够准确模拟Sr50 - AvrSr50复合物结构,与我们最终的结构假设一致。总的来说,这项研究概述了一个用于对抗病原体适应性的NLR工程框架,并提供了具有秆锈病抗性潜力的新型Sr50变体。