Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
LanzaTech Inc., Skokie, IL, USA.
Nat Commun. 2022 Jun 1;13(1):3058. doi: 10.1038/s41467-022-30571-6.
Carbon-negative synthesis of biochemical products has the potential to mitigate global CO emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways into Escherichia coli generates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL), as well as hexanoic acid (3.06 ± 0.03 gL) and 1-hexanol (1.0 ± 0.1 gL) at the best performance reported to date in this bacterium. We also generate Clostridium autoethanogenum strains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology.
生化产品的碳负合成有可能减轻全球 CO 排放。一种有吸引力的方法是将反向β-氧化(r-BOX)途径与 Wood-Ljungdahl 途径偶联。在这里,我们优化并实施 r-BOX 来合成 C4-C6 酸和醇。我们使用针对 r-BOX 定制的无细胞提取物,通过高通量体外原型设计工作流程筛选了 762 种独特的途径组合,以确定用于增强产物选择性的酶组。将这些途径导入大肠杆菌中,生成了用于丁酸(4.9 ± 0.1 g/L)选择性生产的设计菌株,以及己酸(3.06 ± 0.03 g/L)和 1-己醇(1.0 ± 0.1 g/L),这是迄今为止在该细菌中报道的最佳性能。我们还生成了能够从合成气生产 1-己醇的产酸梭菌菌株,在 1.5 L 连续发酵中达到了 0.26 g/L 的滴度。我们的策略能够优化 r-BOX 衍生产品,用于生物制造和工业生物技术。