Suppr超能文献

VUStruct:一种用于高通量和个性化结构生物学的计算流程。

VUStruct: a compute pipeline for high throughput and personalized structural biology.

作者信息

Moth Christopher W, Sheehan Jonathan H, Mamun Abdullah Al, Sivley R Michael, Gulsevin Alican, Rinker David, Capra John A, Meiler Jens

机构信息

Departments of Chemistry, Pharmacology, and Biomedical Informatics; Center for Structural Biology and Institute of Chemical Biology; Vanderbilt Univ., Nashville, TN 37232, USA.

Division of Infection Diseases, Milliken Dept. of Internal Medicine, Washington Univ. of Medicine in St. Louis, MO 63110, USA.

出版信息

bioRxiv. 2025 Mar 26:2024.08.06.606224. doi: 10.1101/2024.08.06.606224.

Abstract

Effective diagnosis and treatment of rare genetic disorders requires the interpretation of a patient's genetic variants of unknown significance (VUSs). Today, clinical decision-making is primarily guided by gene-phenotype association databases and DNA-based scoring methods. Our web-accessible variant analysis pipeline, VUStruct, supplements these established approaches by deeply analyzing the downstream molecular impact of variation in context of 3D protein structure. VUStruct's growing impact is fueled by the co-proliferation of protein 3D structural models, gene sequencing, compute power, and artificial intelligence. Contextualizing VUSs in protein 3D structural models also illuminates longitudinal genomics studies and biochemical bench research focused on VUS, and we created VUStruct for clinicians and researchers alike. We now introduce VUStruct to the broad scientific community as a mature, web-facing, extensible, High-Performance Computing (HPC) software pipeline. VUStruct maps missense variants onto automatically selected protein structures and launches a broad range of analyses. These include energy-based assessments of protein folding and stability, pathogenicity prediction through spatial clustering analysis, and machine learning (ML) predictors of binding surface disruptions and nearby post-translational modification sites. The pipeline also considers the entire input set of VUS and identifies genes potentially involved in digenic disease. VUStruct's utility in clinical rare disease genome interpretation has been demonstrated through its analysis of over 175 Undiagnosed Disease Network (UDN) Patient cases. VUStruct-leveraged hypotheses have often informed clinicians in their consideration of additional patient testing, and we report here details from two cases where VUStruct was key to their solution. We also note successes with academic research collaborators, for whom VUStruct has informed research directions in both computational genomics and wet lab studies.

摘要

有效诊断和治疗罕见遗传疾病需要对患者具有未知意义的基因变异(VUS)进行解读。如今,临床决策主要由基因-表型关联数据库和基于DNA的评分方法指导。我们基于网络的变异分析流程VUStruct,通过在三维蛋白质结构背景下深入分析变异的下游分子影响,对这些既定方法进行了补充。蛋白质三维结构模型、基因测序、计算能力和人工智能的共同发展推动了VUStruct影响力的不断扩大。在蛋白质三维结构模型中对VUS进行背景化分析,也为专注于VUS的纵向基因组学研究和生化实验台研究提供了思路,我们为临床医生和研究人员创建了VUStruct。现在,我们将VUStruct作为一个成熟的、面向网络的、可扩展的高性能计算(HPC)软件流程引入广大科学界。VUStruct将错义变异映射到自动选择的蛋白质结构上,并开展广泛的分析。这些分析包括基于能量的蛋白质折叠和稳定性评估、通过空间聚类分析进行的致病性预测,以及结合表面破坏和附近翻译后修饰位点的机器学习(ML)预测器。该流程还会考虑整个VUS输入集,并识别可能参与双基因疾病的基因。通过对175多个未确诊疾病网络(UDN)患者病例的分析,证明了VUStruct在临床罕见病基因组解读中的实用性。VUStruct所支持的假设常常为临床医生考虑对患者进行额外检测提供依据,我们在此报告两个案例的详细情况,其中VUStruct是解决问题的关键。我们还提到了与学术研究合作者合作取得的成功,对他们而言,VUStruct为计算基因组学和湿实验室研究的研究方向提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24d5/11956607/db1aeee98aa1/nihpp-2024.08.06.606224v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验