Suppr超能文献

新冠疫情期间食物获取方面的不平等:一项多层次、混合方法的试点研究。

Inequities in food access during the COVID19 pandemic: a multilevel, mixed methods pilot study.

作者信息

Aepala Megha R, Guan Alice, Cruz Tessa, Sowell Jamaica, Mattias Brenda, Lin Katherine, Hassberg Analena Hope, Shariff-Marco Salma, DeRouen Mindy C, Akom Antwi

机构信息

Department of Epidemiology and Biostatistics | University of California, San Francisco.

The Social Innovation and Urban Opportunity Lab, Streetwyze | UCSF & San Francisco State University | Oakland, CA.

出版信息

Res Sq. 2024 Aug 9:rs.3.rs-4714565. doi: 10.21203/rs.3.rs-4714565/v1.

Abstract

BACKGROUND

Innovative data integration may serve to inform rapid, local responses to community needs. We conducted a mixed methods pilot study among communities of color or low-income in the San Francisco Bay Area amid the COVID-19 pandemic to assess a hypothesized data model to inform rapid response efforts.

METHODS

Between 2020-2021, we collected (1) qualitative data through neighborhood reports submitted via Streetwyze, a mobile neighborhood mapping platform; (2) survey data on social and economic circumstances; and (3) geospatial data among residents of three counties. Qualitative data were coded and then integrated with survey and geospatial data. We used descriptive analyses to examine participants' experiences with food in their neighborhoods.

RESULTS

Seventy percent of participants reported food insecurity before and after the pandemic began in March 2020. Within neighborhood reports, was the most frequently occurring sub-theme within the and parent themes (68% and 49% of reports, respectively). (88%), (88%), (84%), and (83%) were more likely to be mentioned by participants who were food insecure compared to those who were not (12%, 12%, 16%, 17%, respectively). Mentions of food in neighborhood reports more often occurred in census tracts with lower socioeconomic status and more area-level food insecurity.

CONCLUSION

Individuals who were food insecure reported a constellation of needs beyond food, including needs related to safety and greater social equity. Our data model illustrates the potential for rapid assessment of community residents' experiences to provide enhanced understanding of community-level needs and effective support in the face of changing circumstances.

摘要

背景

创新的数据整合有助于为快速、因地制宜地应对社区需求提供信息。在新冠疫情期间,我们在旧金山湾区的有色人种社区或低收入社区开展了一项混合方法试点研究,以评估一个假设的数据模型,为快速应对工作提供信息。

方法

在2020年至2021年期间,我们收集了以下数据:(1)通过移动邻里地图平台Streetwyze提交的邻里报告收集定性数据;(2)关于社会和经济状况的调查数据;(3)三个县居民的地理空间数据。对定性数据进行编码,然后与调查和地理空间数据整合。我们使用描述性分析来研究参与者在其邻里社区的食品体验。

结果

70%的参与者报告在2020年3月疫情开始前后存在粮食不安全问题。在邻里报告中,“[未提及具体内容]”是“[未提及具体内容]”和“[未提及具体内容]”这两个主题下最常出现的子主题(分别占报告的68%和49%)。与粮食安全的参与者相比(分别为12%、12%、16%、17%),粮食不安全的参与者更有可能提到“[未提及具体内容]”(88%)、“[未提及具体内容]”(88%)、“[未提及具体内容]”(84%)和“[未提及具体内容]”(83%)。邻里报告中提及食品的情况更多发生在社会经济地位较低且地区层面粮食不安全程度较高的人口普查区。

结论

粮食不安全的个人报告了一系列除食品之外的需求,包括与安全和更大社会公平相关的需求。我们的数据模型展示了快速评估社区居民经历的潜力,以便更好地理解社区层面的需求,并在情况变化时提供有效的支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验