Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 632007, Taiwan.
Molecular Imaging Center, National Taiwan University, Taipei 106038, Taiwan.
Sci Transl Med. 2024 May 15;16(747):eadl1408. doi: 10.1126/scitranslmed.adl1408.
Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.
特发性震颤(ET)是最常见的运动障碍,主要表现为意向性震颤,即一种具有特定频率的无意识节律性运动。然而,震颤频率编码的神经元机制仍未被探索。在这里,我们使用活体电生理学、光遗传学和在小鼠模型中的同步运动跟踪来研究神经元活动是否以及如何决定特发性震颤的频率。我们报告说,震颤频率是由这些小鼠橄榄小脑内群体神经元放电的时间相干性编码的,导致小脑振荡和震颤具有频率依赖性。这种机制精确且具有通用性,使我们能够使用深脑刺激小脑核来诱导野生型小鼠产生特定频率的震颤,或改变震颤小鼠的震颤频率。在 ET 患者中,我们发现丘脑深部脑刺激抑制了震颤症状,但并未消除脑电图测量的小脑振荡,表明与震颤相关的小脑振荡不需要与丘脑的相互作用。小脑的频率破坏经颅交流电刺激可以抑制震颤幅度,证实了小脑在 ET 患者中的频率调节作用。这些发现为小脑的频率依赖性刺激治疗特发性震颤提供了神经动力学基础。