Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
Microb Biotechnol. 2024 Aug;17(8):e14549. doi: 10.1111/1751-7915.14549.
Nanoscience, a pivotal field spanning multiple industries, including healthcare, focuses on nanomaterials characterized by their dimensions. These materials are synthesized through conventional chemical and physical methods, often involving costly and energy-intensive processes. Alternatively, biogenic synthesis using bacteria, fungi, or plant extracts offers a potentially sustainable and non-toxic approach for producing metal-based nanoparticles (NP). This eco-friendly synthesis approach not only reduces environmental impact but also enhances features of NP production due to the unique biochemistry of the biological systems. Recent advancements have shown that along with chemically synthesized NPs, biogenic NPs possess significant antimicrobial properties. The inherent biochemistry of bacteria enables the efficient conversion of metal salts into NPs through reduction processes, which are further stabilized by biomolecular capping layers that improve biocompatibility and functional properties. This mini review explores the use of bacteria to produce NPs with antimicrobial activities. Microbial technologies to produce NP antimicrobials have considerable potential to help address the antimicrobial resistance crisis, thus addressing critical health issues aligned with the United Nations Sustainability Goal #3 of good health and well-being.
纳米科学是一个跨多个行业的关键领域,包括医疗保健,专注于具有特定尺寸的纳米材料。这些材料是通过传统的化学和物理方法合成的,通常涉及昂贵和能源密集型的过程。或者,使用细菌、真菌或植物提取物的生物合成为生产基于金属的纳米颗粒 (NP) 提供了一种潜在可持续且无毒的方法。这种环保的合成方法不仅减少了对环境的影响,而且由于生物系统的独特生物化学特性,还增强了 NP 生产的特性。最近的进展表明,除了化学合成的 NPs 外,生物合成的 NPs 还具有显著的抗菌性能。细菌的内在生物化学使金属盐通过还原过程高效转化为 NPs,进一步通过生物分子封端层稳定化,提高了生物相容性和功能特性。本迷你综述探讨了使用细菌生产具有抗菌活性的 NPs。微生物技术生产 NP 抗菌剂具有很大的潜力,可以帮助解决抗菌药物耐药性危机,从而解决与联合国可持续发展目标 3(良好健康与福祉)相一致的关键健康问题。