Suppr超能文献

生物成因和化学成因硒纳米颗粒对模式真核类脂膜的影响。

Impact of Biogenic and Chemogenic Selenium Nanoparticles on Model Eukaryotic Lipid Membranes.

机构信息

Department of Biological, Chemical and Pharmaceutical Science and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy.

Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Alberta, Calgary T2N 1N4, Canada.

出版信息

Langmuir. 2023 Aug 1;39(30):10406-10419. doi: 10.1021/acs.langmuir.3c00718. Epub 2023 Jul 18.

Abstract

Microbial nanotechnology is an expanding research area devoted to producing biogenic metal and metalloid nanomaterials (NMs) using microorganisms. Often, biogenic NMs are explored as antimicrobial, anticancer, or antioxidant agents. Yet, most studies focus on their applications rather than the underlying mechanism of action or toxicity. Here, we evaluate the toxicity of our well-characterized biogenic selenium nanoparticles (bSeNPs) produced by the strain SeITE02 against the model yeast comparing it with chemogenic SeNPs (cSeNPs). Knowing from previous studies that the biogenic extract contained bSeNPs in an organic material (OM) and supported here by Fourier transform infrared spectroscopy, we removed and incubated it with cSeNPs (cSeNPs_OM) to assess its influence on the toxicity of these formulations. Specifically, we focused on the first stages of the eukaryotic cell exposure to these samples─i.e., their interaction with the cell lipid membrane, which was mimicked by preparing vesicles from yeast polar lipid extract or phosphatidylcholine lipids. Fluidity changes derived from biogenic and chemogenic samples revealed that the bSeNP extract mediated the overall rigidification of lipid vesicles, while cSeNPs showed negligible effects. The OM and cSeNPs_OM induced similar modifications to the bSeNP extract, reiterating the need to consider the OM influence on the physical-chemical and biological properties of bSeNP extracts.

摘要

微生物纳米技术是一个不断发展的研究领域,致力于利用微生物生产生物金属和类金属纳米材料(NMs)。通常,生物 NMs 被探索作为抗菌、抗癌或抗氧化剂。然而,大多数研究都集中在它们的应用上,而不是作用机制或毒性的根本原因。在这里,我们评估了由 菌株 SeITE02 产生的、经过充分表征的生物硒纳米颗粒(bSeNPs)的毒性,将其与模型酵母 进行了比较,并将其与化学合成的硒纳米颗粒(cSeNPs)进行了比较。从之前的研究中得知,生物提取物中含有有机材料(OM)中的 bSeNPs,并且傅里叶变换红外光谱也支持这一点,我们将其去除并与 cSeNPs(cSeNPs_OM)一起孵育,以评估其对这些制剂毒性的影响。具体来说,我们专注于真核细胞暴露于这些样品的初始阶段,即它们与细胞脂质膜的相互作用,这通过从酵母极性脂质提取物或磷脂酰胆碱脂质制备囊泡来模拟。生物和化学合成样品的流动性变化表明,bSeNP 提取物介导了脂质囊泡的整体刚性化,而 cSeNPs 则表现出可忽略不计的影响。OM 和 cSeNPs_OM 对 bSeNP 提取物产生了类似的修饰,这再次强调了需要考虑 OM 对 bSeNP 提取物的物理化学和生物学性质的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2d/10399287/67231b1a87c1/la3c00718_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验