Suppr超能文献

利用深度学习进行脑肿瘤细胞类型的准确病理评估。

Harnessing Deep Learning for Accurate Pathological Assessment of Brain Tumor Cell Types.

作者信息

Tian Chongxuan, Xi Yue, Ma Yuting, Chen Cai, Wu Cong, Ru Kun, Li Wei, Zhao Miaoqing

机构信息

School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China.

Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):1098-1111. doi: 10.1007/s10278-024-01107-9. Epub 2024 Aug 16.

Abstract

Primary diffuse central nervous system large B-cell lymphoma (CNS-pDLBCL) and high-grade glioma (HGG) often present similarly, clinically and on imaging, making differentiation challenging. This similarity can complicate pathologists' diagnostic efforts, yet accurately distinguishing between these conditions is crucial for guiding treatment decisions. This study leverages a deep learning model to classify brain tumor pathology images, addressing the common issue of limited medical imaging data. Instead of training a convolutional neural network (CNN) from scratch, we employ a pre-trained network for extracting deep features, which are then used by a support vector machine (SVM) for classification. Our evaluation shows that the Resnet50 (TL + SVM) model achieves a 97.4% accuracy, based on tenfold cross-validation on the test set. These results highlight the synergy between deep learning and traditional diagnostics, potentially setting a new standard for accuracy and efficiency in the pathological diagnosis of brain tumors.

摘要

原发性弥漫性中枢神经系统大B细胞淋巴瘤(CNS-pDLBCL)和高级别胶质瘤(HGG)在临床和影像学表现上通常相似,这使得鉴别诊断具有挑战性。这种相似性会使病理学家的诊断工作变得复杂,但准确区分这两种疾病对于指导治疗决策至关重要。本研究利用深度学习模型对脑肿瘤病理图像进行分类,解决了医学影像数据有限这一常见问题。我们不是从头开始训练卷积神经网络(CNN),而是采用预训练网络来提取深度特征,然后由支持向量机(SVM)用于分类。我们的评估表明,基于测试集的十折交叉验证,Resnet50(迁移学习+支持向量机)模型的准确率达到了97.4%。这些结果凸显了深度学习与传统诊断方法之间的协同作用,可能为脑肿瘤病理诊断的准确性和效率设定新的标准。

相似文献

8
Robust brain MRI image classification with SIBOW-SVM.基于自迭代平衡优化加权策略支持向量机的稳健脑磁共振成像图像分类
Comput Med Imaging Graph. 2024 Dec;118:102451. doi: 10.1016/j.compmedimag.2024.102451. Epub 2024 Oct 24.

本文引用的文献

3
Review on Deep Learning-Based CAD Systems for Breast Cancer Diagnosis.基于深度学习的乳腺癌诊断 CAD 系统综述。
Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231177977. doi: 10.1177/15330338231177977.
7
Domain generalization in deep learning for contrast-enhanced imaging.深度学习中的对比增强成像的领域泛化。
Comput Biol Med. 2022 Oct;149:106052. doi: 10.1016/j.compbiomed.2022.106052. Epub 2022 Aug 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验