Suppr超能文献

深度学习在恶性淋巴瘤的高级计算机辅助诊断中显示出了强大的能力。

Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma.

机构信息

Department of Pathology, Kurume University School of Medicine, Kurume, Japan.

Healthcare Analytics, Global Business Services, IBM Japan Ltd, Tokyo, Japan.

出版信息

Lab Invest. 2020 Oct;100(10):1300-1310. doi: 10.1038/s41374-020-0442-3. Epub 2020 May 29.

Abstract

A pathological evaluation is one of the most important methods for the diagnosis of malignant lymphoma. A standardized diagnosis is occasionally difficult to achieve even by experienced hematopathologists. Therefore, established procedures including a computer-aided diagnosis are desired. This study aims to classify histopathological images of malignant lymphomas through deep learning, which is a computer algorithm and type of artificial intelligence (AI) technology. We prepared hematoxylin and eosin (H&E) slides of a lesion area from 388 sections, namely, 259 with diffuse large B-cell lymphoma, 89 with follicular lymphoma, and 40 with reactive lymphoid hyperplasia, and created whole slide images (WSIs) using a whole slide system. WSI was annotated in the lesion area by experienced hematopathologists. Image patches were cropped from the WSI to train and evaluate the classifiers. Image patches at magnifications of ×5, ×20, and ×40 were randomly divided into a test set and a training and evaluation set. The classifier was assessed using the test set through a cross-validation after training. The classifier achieved the highest levels of accuracy of 94.0%, 93.0%, and 92.0% for image patches with magnifications of ×5, ×20, and ×40, respectively, in comparison to diffuse large B-cell lymphoma, follicular lymphoma, and reactive lymphoid hyperplasia. Comparing the diagnostic accuracies between the proposed classifier and seven pathologists, including experienced hematopathologists, using the test set made up of image patches with magnifications of ×5, ×20, and ×40, the best accuracy demonstrated by the classifier was 97.0%, whereas the average accuracy achieved by the pathologists using WSIs was 76.0%, with the highest accuracy reaching 83.3%. In conclusion, the neural classifier can outperform pathologists in a morphological evaluation. These results suggest that the AI system can potentially support the diagnosis of malignant lymphoma.

摘要

病理评估是恶性淋巴瘤诊断的最重要方法之一。即使是经验丰富的血液病理学家,有时也难以做出标准化诊断。因此,需要建立包括计算机辅助诊断在内的既定程序。本研究旨在通过深度学习对恶性淋巴瘤的组织病理学图像进行分类,深度学习是一种计算机算法和人工智能 (AI) 技术。我们准备了 388 个切片的病变区域的苏木精和伊红(H&E)载玻片,其中 259 个为弥漫性大 B 细胞淋巴瘤,89 个为滤泡性淋巴瘤,40 个为反应性淋巴组织增生,并用全玻片系统制作了全玻片图像(WSI)。由经验丰富的血液病理学家在病变区域进行 WSI 注释。从 WSI 中裁剪图像块来训练和评估分类器。以随机方式将 ×5、×20 和 ×40 放大倍数的图像块分为测试集和训练及评估集。在训练后,通过交叉验证使用测试集评估分类器。与弥漫性大 B 细胞淋巴瘤、滤泡性淋巴瘤和反应性淋巴组织增生相比,分类器在×5、×20 和×40 放大倍数的图像块上的测试集达到了 94.0%、93.0%和 92.0%的最高准确性。与包括经验丰富的血液病理学家在内的 7 位病理学家使用×5、×20 和×40 放大倍数的图像块组成的测试集比较分类器和病理学家的诊断准确率,分类器的最佳准确率为 97.0%,而病理学家使用 WSI 的平均准确率为 76.0%,准确率最高可达 83.3%。总之,神经分类器在形态学评估方面可以优于病理学家。这些结果表明,AI 系统有可能支持恶性淋巴瘤的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验